Abstract

Quantitative surface-enhanced Raman scattering (SERS) in practical applications still remain unresolved, mainly due to low reproducibility relying on the quality of the SERS substrates. In this paper, a carbon nanotube and Ag nanoparticles composite (CNT/AgNPs) is reported, and the carbon nanotube is as an internal standard for the calibration of SERS intensity of analyte molecules. The quantification of analyte molecules rhodamine 6G (R6G) is demonstrated in an aqueous solution with the concentration of 10-9 to 10-7 M. Raman mapping is used to investigate the stability of SERS spectra in a large scanning area, and the corresponding relative standard deviation (RSD) is calculated. SERS mapping reveals that the uniformity of Raman enhancement is improved through the build-in calibration with 2D Raman peak of CNT. Meanwhile, CNT/AgNPs samples are used to detect N2 in natural air, indicating that such self-calibration method can improve the reliability of the SERS analysis.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing

Jie Zhang, Xiaolei Zhang, Chunhong Lai, Haijun Zhou, and Yong Zhu
Opt. Express 22(18) 21157-21166 (2014)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering

Zhang Jie, Yin Zenghe, Gong Tiancheng, Luo Yunfei, Wei Dapeng, and Zhu Yong
Opt. Express 26(17) 22432-22439 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  3. H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
    [Crossref]
  4. E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
    [Crossref] [PubMed]
  5. S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
    [Crossref]
  6. P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
    [Crossref] [PubMed]
  7. T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
    [Crossref]
  8. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  9. Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
    [Crossref]
  10. H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
    [Crossref] [PubMed]
  11. H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
    [Crossref] [PubMed]
  12. K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
    [Crossref] [PubMed]
  13. J. Quan, Y. Zhu, J. Zhang, J. Li, and N. Wang, “High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands,” Appl. Opt. 56(20), 5751–5760 (2017).
    [Crossref] [PubMed]
  14. H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
    [Crossref] [PubMed]
  15. A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
    [Crossref]
  16. J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
    [Crossref] [PubMed]
  17. J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
    [Crossref] [PubMed]
  18. X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
    [Crossref] [PubMed]
  19. B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
    [Crossref]
  20. N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
    [Crossref] [PubMed]
  21. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref] [PubMed]

2018 (1)

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

2017 (5)

H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
[Crossref]

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

J. Quan, Y. Zhu, J. Zhang, J. Li, and N. Wang, “High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands,” Appl. Opt. 56(20), 5751–5760 (2017).
[Crossref] [PubMed]

2016 (6)

K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

2015 (3)

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

2014 (1)

2012 (1)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

2010 (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

2008 (1)

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Anema, J. R.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Auguie, B.

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Blanch, E. W.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Chang, Y. M.

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

Chen, H. Y.

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

Chen, L.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Chen, Y. Q.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Chen, Z.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Chidester, P. P. F.

K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
[Crossref] [PubMed]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Darby, B. L.

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Ding, D.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ellis, D. I.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fisk, H.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Gaufrès, E.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Gong, T. C.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Goodacre, R.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Gwo, S.

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

Heeg, S.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Hübner, U.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kanipe, K. N.

K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kusch, P.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Lai, C.

Lai, X. F.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Le Ru, E. C.

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

Li, J.

Li, J. F.

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Lin, M. H.

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

Liu, S. Y.

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

Martel, R.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

McCarthy, A.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Mcquillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Meyer, M.

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

Moskovits, M.

K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
[Crossref] [PubMed]

Mueller, N. S.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Muhamadali, H.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Mutter, S. T.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Pantoja, A. E.

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Quan, J.

J. Quan, Y. Zhu, J. Zhang, J. Li, and N. Wang, “High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands,” Appl. Opt. 56(20), 5751–5760 (2017).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Quan, J. M.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Reich, S.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ren, W. J.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Song, J.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Song, Z. L.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Stucky, G. D.

K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
[Crossref] [PubMed]

Subaihi, A.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Sun, Y.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Tan, W. H.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Tang, N. Y. W.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Tian, H.

H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
[Crossref]

Tian, X. D.

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

Tian, Z. Q.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Tong, L.

H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
[Crossref]

Turner, N. J.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Vijayaraghavan, A.

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

Vikesland, P. J.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Wandlowski, T.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Wang, C. Y.

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

Wang, N.

J. Quan, Y. Zhu, J. Zhang, J. Li, and N. Wang, “High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands,” Appl. Opt. 56(20), 5751–5760 (2017).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Wang, S. S.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wei, H.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Westley, C.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, S. R.

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

Xie, W. B.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Xu, Y.

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Xu, Y. T.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, J.

H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
[Crossref]

J. Quan, Y. Zhu, J. Zhang, J. Li, and N. Wang, “High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands,” Appl. Opt. 56(20), 5751–5760 (2017).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

Zhang, N.

H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
[Crossref]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

Zhang, Y.

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Zhou, H.

Zhou, W.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, Y.

J. Quan, Y. Zhu, J. Zhang, J. Li, and N. Wang, “High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands,” Appl. Opt. 56(20), 5751–5760 (2017).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

Zou, Y. X.

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

ACS Nano (1)

K. N. Kanipe, P. P. F. Chidester, G. D. Stucky, and M. Moskovits, “Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity,” ACS Nano 10(8), 7566–7571 (2016).
[Crossref] [PubMed]

Anal. Methods (1)

A. Subaihi, Y. Xu, H. Muhamadali, S. T. Mutter, E. W. Blanch, D. I. Ellis, and R. Goodacre, “Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling,” Anal. Methods 9(47), 6636–6644 (2017).
[Crossref]

Analyst (Lond.) (1)

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Carbon (1)

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Soc. Rev. (1)

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Faraday Discuss. (2)

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

N. S. Mueller, S. Heeg, P. Kusch, E. Gaufrès, N. Y. W. Tang, U. Hübner, R. Martel, A. Vijayaraghavan, and S. Reich, “Plasmonic enhancement of SERS measured on molecules in carbon nanotubes,” Faraday Discuss. 205, 85–103 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” J. Am. Chem. Soc. 137(42), 13698–13705 (2015).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

S. R. Wu, X. D. Tian, S. Y. Liu, Y. Zhang, and J. F. Li, “Surface‐enhanced Raman spectroscopy solution and solid substrates with built‐in calibration for quantitative applications,” J. Raman Spectrosc. 49(4), 659–667 (2018).
[Crossref]

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Nano Res. (1)

Y. X. Zou, L. Chen, Z. L. Song, D. Ding, Y. Q. Chen, Y. T. Xu, S. S. Wang, X. F. Lai, Y. Zhang, Y. Sun, Z. Chen, and W. H. Tan, “Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis,” Nano Res. 9(5), 1418–1425 (2016).
[Crossref]

Nat. Photonics (1)

B. L. Darby, B. Auguie, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage,” Nat. Photonics 10(1), 40–54 (2016).
[Crossref]

Nature (2)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Small Methods (1)

H. Tian, N. Zhang, L. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(26), 1700126 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Normalization procedure for analyte detection using Raman spectroscopy. The spectral data show the Raman peaks of the analyte and CNT. The intensity of analyte and CNT is used to calculate the ratio k (IAnalyte/ICNT), where NAnalyte and NCNT is the number of analyte molecule and CNT, αAnalyte and αCNT is the Raman scattering polarizability of analyte molecules and CNT, I0(ω0) is the incident light intensity of the laser at frequency ω0.
Fig. 2
Fig. 2 (a). Representative 5 results of SERS quantification measurements of R6G (concentration of 10−7 M) using CNT/AgNPs as SERS substrates, with the C-C-C bond vibration mode (~613 cm−1), out-of-plane bending motion of C-H bond mode (~773 cm−1), and 2D peak of CNT (~2673 cm−1). (b) Probability density function of the ratio k (data at ~613 cm−1 used), showing the good lognormal distribution with a lognormal median at k = 2.114. (c) Probability-probability plot visually demonstrating the goodness of fit with a lognormal distribution (red line, theoretical fit; black dots, our experimental data). The corresponding probability density function of the ratio k (data at ~613 cm−1 used) when R6G with concentration of (d) 10−8 M and (e) 10−9 M using the same Raman mapping measurement.
Fig. 3
Fig. 3 (a) Raman mapping results of R6G with concentration of 10−7 M; (b) three random Raman mapping areas for R6G with concentration of 10−9 M; the corresponding calculated RSD of (c) Raman intensity at ~613 cm−1, and (d) the normalized ratio k, when R6G with concentration of 10−7 M; (e) the averaged Raman signals of R6G with concentration of 10−7, 10−8, and 10−9 M; (f) the averaged Raman signals of R6G (10−9 M) in three random Raman mapping areas.
Fig. 4
Fig. 4 Representative 5 results of SERS quantification measurements of N2 with (a) CNT/AgNPs and (b) multi-walls carbon nanotubes (CNTs)/AgNPs as SERS substrates.

Metrics