Abstract

This paper proposes an all-optical-fiber sensor for continuous measurements of liquid levels. The proposed sensor utilizes an optically absorbing vanadium doped optical fiber, which is configured as a long-gauge, optically-heated, fiber-optic, Fabry-Perot interferometer that is immersed into the measured liquid. The sensor is excited cyclically by a medium-power 980 nm optical source, which induces periodic temperature variation and, consequently, optical path length modulation within the vanadium doped fiber. The amplitude of this path length variation depends on the liquid level and is measured by an interferometric approach. The relation between the liquid level and the amplitude of optical path length modulation caused by the fiber’s temperature variation were investigated analytically, and the theoretical model proved to be in good agreement with the experimental results. Two versions of level sensors are demonstrated experimentally, the first with single-side optical heating power delivery and 0.45 m measurement range, and the second with dual-side power delivery and 1 m of operational measurement span. Experimental measurement level resolutions achieved for 0.45 m and 1m operational measurement span were approximately 2 and 3 mm, respectively. The simple and efficient design of sensor and signal interrogation system, the latter is based solely on a few widely available telecom components, provides straightforward opportunities for use of the proposed system in a variety of industrial applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers

Ziga Matjasec, Stanislav Campelj, and Denis Donlagic
Opt. Express 21(10) 11794-11807 (2013)

Liquid-level sensor with optical fibers

Katsuharu Iwamoto and Isao Kamata
Appl. Opt. 31(1) 51-54 (1992)

Fiber-optic liquid-level sensor using a long-period grating

Sarfraz Khaliq, Stephen W. James, and Ralph P. Tatam
Opt. Lett. 26(16) 1224-1226 (2001)

References

  • View by:
  • |
  • |
  • |

  1. K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” Measurement 89, 204–214 (2016).
    [Crossref]
  2. P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
    [Crossref]
  3. D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
    [Crossref]
  4. C. N. Yang, S. P. Chen, and G. G. Yang, “Fiber optical liquid level sensor under cryogenic environment,” Sensor. Actuat. A-Phys. 94, 69–75 (2001).
  5. X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
    [Crossref]
  6. M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).
  7. C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
    [Crossref]
  8. C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref] [PubMed]
  9. T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
    [Crossref]
  10. T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
    [Crossref]
  11. F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
    [Crossref] [PubMed]
  12. K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
    [Crossref]
  13. T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
    [Crossref]
  14. X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
    [Crossref]
  15. D. Bo, Z. Qida, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45(30), 7767–7771 (2006).
    [Crossref] [PubMed]
  16. B. F. Yun, N. Chen, and Y. P. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
    [Crossref]
  17. S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).
  18. K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sensor. Actuat. A-Phys. 152, 248–251 (2009).
  19. H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
    [Crossref]
  20. D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
    [Crossref]
  21. E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).
  22. J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
    [Crossref]
  23. T. Lü and S. Yang, “Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor,” Appl. Opt. 46(18), 3682–3687 (2007).
    [Crossref] [PubMed]
  24. T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
    [Crossref] [PubMed]
  25. W. H. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
    [Crossref]
  26. C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
    [Crossref]
  27. O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
    [Crossref]
  28. Y. Dai, Q. Sun, S. Tan, J. Wo, J. Zhang, and D. Liu, “Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation,” Opt. Express 20(25), 27367–27376 (2012).
    [Crossref] [PubMed]
  29. X. Wen, T. Ning, C. Li, Z. Kang, J. Li, H. You, T. Feng, J. Zheng, and W. Jian, “Liquid level measurement by applying the Mach-Zehnder interferometer based on up-tapers,” Appl. Opt. 53(1), 71–75 (2014).
    [Crossref] [PubMed]
  30. S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46(11), 114401 (2007).
    [Crossref]
  31. C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
    [Crossref]
  32. B. Gu, W. Qi, Y. Zhou, Z. Wu, P. P. Shum, and F. Luan, “Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating titled fiber Bragg grating,” Opt. Express 22(10), 11834–11839 (2014).
    [Crossref] [PubMed]
  33. S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26(16), 1224–1226 (2001).
    [Crossref] [PubMed]
  34. P. Nath, P. Datta, and K. C. Sarma, “All fiber-optic sensor for liquid level measurement,” Microw. Opt. Techn. 50(7), 1982–1984 (2008).
    [Crossref]
  35. F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).
  36. Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
    [Crossref]
  37. W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
    [Crossref]
  38. J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
    [Crossref]
  39. H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).
  40. Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
    [Crossref]
  41. H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
    [Crossref]
  42. H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
    [Crossref]
  43. C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
    [Crossref]
  44. T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
    [Crossref]
  45. K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, Y. Xu, and Z. Wu, “Online fabrication scheme of helical long-period fiber grating for liquid-level sensing,” Appl. Opt. 55(34), 9675–9679 (2016).
    [Crossref] [PubMed]
  46. A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
    [Crossref]
  47. Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
    [Crossref]
  48. N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
    [Crossref]
  49. Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).
  50. P. Nath, H. K. Singh, D. Tiwari, and T. Basumatry, “Fiber-optic liquid level sensor based on coupling optical path length variation,” Rev. Sci. Instrum. 83(5), 055006 (2012).
    [Crossref] [PubMed]
  51. S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
    [Crossref]
  52. C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).
  53. G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
    [Crossref]
  54. T. Chen, Q. Wang, R. Chen, B. Zhang, Y. Lin, and K. P. Chen, “Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management,” Appl. Opt. 51(26), 6282–6289 (2012).
    [Crossref] [PubMed]
  55. https://koboldusa.com/products/level/level-monitoring/opt-optical-level-switch
  56. https://www.gemssensors.com/level/single-point-level-switches/electro-optic
  57. Z. Matjasec, S. Campelj, and D. Donlagic, “All-optical, thermo-optical path length modulation based on the vanadium-doped fibers,” Opt. Express 21(10), 11794–11807 (2013).
    [Crossref] [PubMed]
  58. H. Taylor, Method for producing reflective taps in optical fibers and applications thereof, US. patent 4,848,999 (1989).
  59. V. Budinski and D. Donlagic, “Quasi-distributed twist/torsion sensor,” Opt. Express 24(23), 26282–26299 (2016).
    [Crossref] [PubMed]
  60. Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sensor. Actuat. B-Chem. 242, 577–585 (2017).

2018 (2)

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

2017 (6)

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sensor. Actuat. B-Chem. 242, 577–585 (2017).

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

2016 (8)

K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” Measurement 89, 204–214 (2016).
[Crossref]

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

V. Budinski and D. Donlagic, “Quasi-distributed twist/torsion sensor,” Opt. Express 24(23), 26282–26299 (2016).
[Crossref] [PubMed]

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, Y. Xu, and Z. Wu, “Online fabrication scheme of helical long-period fiber grating for liquid-level sensing,” Appl. Opt. 55(34), 9675–9679 (2016).
[Crossref] [PubMed]

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

2015 (6)

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
[Crossref]

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

2014 (9)

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
[Crossref]

W. H. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
[Crossref]

B. Gu, W. Qi, Y. Zhou, Z. Wu, P. P. Shum, and F. Luan, “Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating titled fiber Bragg grating,” Opt. Express 22(10), 11834–11839 (2014).
[Crossref] [PubMed]

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

X. Wen, T. Ning, C. Li, Z. Kang, J. Li, H. You, T. Feng, J. Zheng, and W. Jian, “Liquid level measurement by applying the Mach-Zehnder interferometer based on up-tapers,” Appl. Opt. 53(1), 71–75 (2014).
[Crossref] [PubMed]

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
[Crossref]

2013 (4)

Z. Matjasec, S. Campelj, and D. Donlagic, “All-optical, thermo-optical path length modulation based on the vanadium-doped fibers,” Opt. Express 21(10), 11794–11807 (2013).
[Crossref] [PubMed]

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

2012 (3)

2011 (2)

H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
[Crossref]

T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
[Crossref]

2010 (3)

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[Crossref] [PubMed]

S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
[Crossref]

2009 (2)

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sensor. Actuat. A-Phys. 152, 248–251 (2009).

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

2008 (1)

P. Nath, P. Datta, and K. C. Sarma, “All fiber-optic sensor for liquid level measurement,” Microw. Opt. Techn. 50(7), 1982–1984 (2008).
[Crossref]

2007 (4)

T. Lü and S. Yang, “Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor,” Appl. Opt. 46(18), 3682–3687 (2007).
[Crossref] [PubMed]

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46(11), 114401 (2007).
[Crossref]

B. F. Yun, N. Chen, and Y. P. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

2006 (2)

D. Bo, Z. Qida, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45(30), 7767–7771 (2006).
[Crossref] [PubMed]

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

2005 (2)

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

2004 (1)

C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).

2001 (2)

C. N. Yang, S. P. Chen, and G. G. Yang, “Fiber optical liquid level sensor under cryogenic environment,” Sensor. Actuat. A-Phys. 94, 69–75 (2001).

S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26(16), 1224–1226 (2001).
[Crossref] [PubMed]

Abril, J. M.

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

Ahmad, H.

H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
[Crossref]

Aiestaran, P.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

Andre, P.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Andre, P. S. B.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Antunes, P.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Antunes, P. F. D.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Arof, H.

H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
[Crossref]

Arregui, F. J.

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

Arrue, J.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

Bang, O.

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

Barrera, D.

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

Basumatry, T.

P. Nath, H. K. Singh, D. Tiwari, and T. Basumatry, “Fiber-optic liquid level sensor based on coupling optical path length variation,” Rev. Sci. Instrum. 83(5), 055006 (2012).
[Crossref] [PubMed]

Binu, S.

S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
[Crossref]

Bo, D.

Boukenter, A.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Budinski, V.

Buric, M.

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Campelj, S.

Cannas, M.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Casanova, P.

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46(11), 114401 (2007).
[Crossref]

Chandrasekaran, N.

S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
[Crossref]

Chang, H. P.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Chen, K. P.

T. Chen, Q. Wang, R. Chen, B. Zhang, Y. Lin, and K. P. Chen, “Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management,” Appl. Opt. 51(26), 6282–6289 (2012).
[Crossref] [PubMed]

T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
[Crossref]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[Crossref] [PubMed]

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Chen, N.

B. F. Yun, N. Chen, and Y. P. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Chen, N. N.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Chen, R.

Chen, S. P.

C. N. Yang, S. P. Chen, and G. G. Yang, “Fiber optical liquid level sensor under cryogenic environment,” Sensor. Actuat. A-Phys. 94, 69–75 (2001).

Chen, T.

T. Chen, Q. Wang, R. Chen, B. Zhang, Y. Lin, and K. P. Chen, “Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management,” Appl. Opt. 51(26), 6282–6289 (2012).
[Crossref] [PubMed]

T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
[Crossref]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[Crossref] [PubMed]

Chen, Y. Y.

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

Coelho, F.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

Corres, J. M.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Cui, Y. P.

B. F. Yun, N. Chen, and Y. P. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Dai, Y.

Datta, P.

P. Nath, P. Datta, and K. C. Sarma, “All fiber-optic sensor for liquid level measurement,” Microw. Opt. Techn. 50(7), 1982–1984 (2008).
[Crossref]

Del Villar, I.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Dias, J.

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Diaz, C. A. R.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Dini, D. C.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Dong, X. Y.

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Dong, Y.

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Donlagic, D.

Dou, Q. Y.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Du, Y. Y.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Durelli, A. S.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Feng, D. Y.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Feng, L.

Feng, L. S.

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

Feng, T.

Feng, Z. Y.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Ferreira, P.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

Floridia, C.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Frizera-Neto, A.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Fu, H. Y.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Fuentes, O.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Gallego, E. E.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Gao, X. K.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

Gao, X. L.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

Girard, S.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Goicoechea, J.

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

Gong, H. P.

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

Gong, Z. F.

X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
[Crossref]

Gonzalo, A. B.

C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).

Gu, B.

Guo, T.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Harun, S. W.

H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
[Crossref]

He, J.

G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
[Crossref]

He, K.

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

He, Z. Q.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Hong, G.

Hou, Y. L.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

Hsu, J. M.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Hu, B. W.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Hu, M. L.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Hu, Y. J.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

Huang, G. L.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46(11), 114401 (2007).
[Crossref]

James, S. W.

Jauregui, C.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

Jedrzejewski, K.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Jewart, C.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Jian, S. S.

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Jian, W.

Jiang, B. Q.

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

Jiang, W.

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

Jiang, Y. J.

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

Jin, B. Q.

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

Jing, N.

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

Ju, H.

Ju, H. J.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Jurek, T.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Kang, Z.

Khaliq, S.

Kishore, P.

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

Kochunarayanan, K.

S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
[Crossref]

Kong, X.

Koutroulis, E.

K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” Measurement 89, 204–214 (2016).
[Crossref]

Leal, A. G.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Lee, C. L.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Leonardi, A. A.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Li, C.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

X. Wen, T. Ning, C. Li, Z. Kang, J. Li, H. You, T. Feng, J. Zheng, and W. Jian, “Liquid level measurement by applying the Mach-Zehnder interferometer based on up-tapers,” Appl. Opt. 53(1), 71–75 (2014).
[Crossref] [PubMed]

Li, C. M.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Li, F.

W. H. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
[Crossref]

Li, J.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

X. Wen, T. Ning, C. Li, Z. Kang, J. Li, H. You, T. Feng, J. Zheng, and W. Jian, “Liquid level measurement by applying the Mach-Zehnder interferometer based on up-tapers,” Appl. Opt. 53(1), 71–75 (2014).
[Crossref] [PubMed]

Li, Y. L.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Li, Z.

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

Liang, J.

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, Y. Xu, and Z. Wu, “Online fabrication scheme of helical long-period fiber grating for liquid-level sensing,” Appl. Opt. 55(34), 9675–9679 (2016).
[Crossref] [PubMed]

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Lifang, X.

Lin, H.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

Lin, X.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Lin, Y.

Liu, D.

Liu, J.

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

Liu, J. X.

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Liu, W. Y.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

Liu, Z. G.

X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
[Crossref]

Loichate, M. D.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Loizou, K.

K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” Measurement 89, 204–214 (2016).
[Crossref]

Lomer, M.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

Lopez-Higuera, J. M.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

Lu, T.

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

Lü, T.

Luan, F.

Mace, J. R.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Maklad, M.

T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
[Crossref]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

Marin, E.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Markowski, K.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Marques, C. A. F.

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

Martinez, J. A.

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

Matias, I. R.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Matjasec, Z.

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sensor. Actuat. B-Chem. 242, 577–585 (2017).

Z. Matjasec, S. Campelj, and D. Donlagic, “All-optical, thermo-optical path length modulation based on the vanadium-doped fibers,” Opt. Express 21(10), 11794–11807 (2013).
[Crossref] [PubMed]

McMillen, B.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Mesquita, E.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Montalvo, J.

C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).

Mou, C. B.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Nath, P.

P. Nath, H. K. Singh, D. Tiwari, and T. Basumatry, “Fiber-optic liquid level sensor based on coupling optical path length variation,” Rev. Sci. Instrum. 83(5), 055006 (2012).
[Crossref] [PubMed]

P. Nath, P. Datta, and K. C. Sarma, “All fiber-optic sensor for liquid level measurement,” Microw. Opt. Techn. 50(7), 1982–1984 (2008).
[Crossref]

Ni, K.

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

Nielsen, K.

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

Ning, T.

Ning, T. G.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

Osuch, T.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Ouerdane, Y.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Paixao, T.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Pei, L.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

Peng, G. D.

Peng, G. L.

G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
[Crossref]

Peng, W.

X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
[Crossref]

Penze, R. S.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Perez-Ocon, F.

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

Perisse, J.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Pillai, V. P. M.

S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
[Crossref]

Pontes, M. J.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Pospori, A.

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

Qi, B.

Qi, W.

Qian, L.

Qiao, X. G.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Qida, Z.

Qin, C.

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

Qu, E. S.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Rauf, A.

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

Ren, K.

Ren, L.

Ren, L. Y.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Ribeiro, M. R. N.

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

Ricchiuti, A. L.

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

Rizzolo, S.

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Rong, Q. Z.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Rosolem, J. B.

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

Rubino, A.

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

Saez-Rodriguez, D.

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

Sales, S.

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

Sarma, K. C.

P. Nath, P. Datta, and K. C. Sarma, “All fiber-optic sensor for liquid level measurement,” Microw. Opt. Techn. 50(7), 1982–1984 (2008).
[Crossref]

Sengupta, D.

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

Shih, W. C.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Shim, J. H.

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sensor. Actuat. A-Phys. 152, 248–251 (2009).

Shuhong, L.

Shum, P. P.

Singh, H. K.

P. Nath, H. K. Singh, D. Tiwari, and T. Basumatry, “Fiber-optic liquid level sensor based on coupling optical path length variation,” Rev. Sci. Instrum. 83(5), 055006 (2012).
[Crossref] [PubMed]

Socorro, A. B.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Sohn, K. R.

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sensor. Actuat. A-Phys. 152, 248–251 (2009).

Song, H. F.

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

Su, S.

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

Sun, C. R.

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Sun, H.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Sun, Q.

Swinehart, P. R.

T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
[Crossref]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

Tan, S.

Tatam, R. P.

Teng, C. X.

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

Tiwari, D.

P. Nath, H. K. Singh, D. Tiwari, and T. Basumatry, “Fiber-optic liquid level sensor based on coupling optical path length variation,” Rev. Sci. Instrum. 83(5), 055006 (2012).
[Crossref] [PubMed]

Tong, Z. R.

W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
[Crossref]

Tuan, G.

Urrutia, A.

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

Vargas, S.

C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).

Varum, H.

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Vazquez, C.

C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).

Vento, J. R.

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

Wang, D.

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

Wang, G. J.

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

Wang, Q.

Wang, R. H.

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Wang, W. H.

W. H. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
[Crossref]

Wang, Y.

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

Wang, Z. B.

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

Webb, D. J.

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

Wen, X.

Wen, X. D.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

Wo, J.

Wu, Z.

Xia, D.

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

Xiao, H.

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Xiao, S. Y.

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Xiong, J. J.

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

Xu, D.

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[Crossref] [PubMed]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

Xu, W.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Xu, Y.

Xu, Y. P.

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

Xue, L. F.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Yan, Z. J.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Yang, C. N.

C. N. Yang, S. P. Chen, and G. G. Yang, “Fiber optical liquid level sensor under cryogenic environment,” Sensor. Actuat. A-Phys. 94, 69–75 (2001).

Yang, G. G.

C. N. Yang, S. P. Chen, and G. G. Yang, “Fiber optical liquid level sensor under cryogenic environment,” Sensor. Actuat. A-Phys. 94, 69–75 (2001).

Yang, H. Z.

H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
[Crossref]

Yang, S.

Yang, S. P.

G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
[Crossref]

Ye, F.

Ying, Z. S.

W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
[Crossref]

You, H.

Yuan, S.

W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
[Crossref]

Yun, B. F.

B. F. Yun, N. Chen, and Y. P. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Zhang, B.

Zhang, C.

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

Zhang, G.

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

Zhang, H.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Zhang, H. X.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

Zhang, J.

Zhang, J. W.

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

Zhang, L.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Zhang, M. J.

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

Zhang, S. L.

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

Zhang, W. H.

W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
[Crossref]

Zhang, X. P.

X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
[Crossref]

Zhang, Y.

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

Zhang, Y. J.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

Zhang, Y. Z.

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

Zhao, J. L.

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

Zhao, Q. D.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Zheng, J.

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

X. Wen, T. Ning, C. Li, Z. Kang, J. Li, H. You, T. Feng, J. Zheng, and W. Jian, “Liquid level measurement by applying the Mach-Zehnder interferometer based on up-tapers,” Appl. Opt. 53(1), 71–75 (2014).
[Crossref] [PubMed]

Zhou, K. M.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Zhou, W. Y.

G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
[Crossref]

Zhou, Y.

Zubia, J.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

IEEE Photonics J. (3)

X. P. Zhang, W. Peng, Z. G. Liu, and Z. F. Gong, “Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry,” IEEE Photonics J. 6(2), 6801108 (2014).
[Crossref]

D. Wang, Y. Zhang, B. Q. Jin, Y. Wang, and M. J. Zhang, “Quasi-distributed optical fiber sensor for liquid-level measurement,” IEEE Photonics J. 9(6), 6 (2017).
[Crossref]

Y. Z. Zhang, Y. L. Hou, Y. J. Zhang, Y. J. Hu, L. Zhang, X. L. Gao, H. X. Zhang, and W. Y. Liu, “Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler,” IEEE Photonics J. 10, 6800806 (2018).

IEEE Photonics Technol. Lett. (6)

X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technol. Lett. 26(16), 1613–1616 (2014).
[Crossref]

B. F. Yun, N. Chen, and Y. P. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photonics Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly Sensitive Tapered Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” IEEE Photonics Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Y. Dong, S. Y. Xiao, H. Xiao, J. X. Liu, C. R. Sun, and S. S. Jian, “An optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

N. Jing, C. X. Teng, J. Zheng, G. J. Wang, Y. Y. Chen, and Z. B. Wang, “A liquid level sensor based on a Race-Track Helical Plastic Optical Fiber,” IEEE Photonics Technol. Lett. 29(1), 158–160 (2017).
[Crossref]

IEEE Sens. J. (8)

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

A. L. Ricchiuti, D. Barrera, A. Urrutia, J. Goicoechea, F. J. Arregui, and S. Sales, “Continuous liquid-level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques,” IEEE Sens. J. 16(6), 1652–1658 (2016).
[Crossref]

H. X. Zhang, Y. L. Hou, L. S. Feng, S. Su, J. W. Zhang, J. Liu, W. Y. Liu, J. Liu, and J. J. Xiong, “Polymer optical fiber continuous liquid level sensor for dynamic measurement,” IEEE Sens. J. 15(9), 5238–5242 (2015).
[Crossref]

C. A. R. Diaz, A. G. Leal, P. S. B. Andre, P. F. D. Antunes, M. J. Pontes, A. Frizera-Neto, and M. R. N. Ribeiro, “Liquid level measurement based on FBG-embedded diaphragms with temperature compensation,” IEEE Sens. J. 18(1), 193–200 (2018).
[Crossref]

O. Fuentes, I. Del Villar, J. R. Vento, A. B. Socorro, E. E. Gallego, J. M. Corres, and I. R. Matias, “Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode fiber structure,” IEEE Sens. J. 17(17), 5515–5522 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings,” IEEE Sens. J. 16(15), 6122–6129 (2016).
[Crossref]

J. B. Rosolem, D. C. Dini, R. S. Penze, C. Floridia, A. A. Leonardi, M. D. Loichate, and A. S. Durelli, “Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review,” IEEE Sens. J. 13(11), 4113–4120 (2013).
[Crossref]

T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic Fluid Level Sensing,” IEEE Sens. J. 11(4), 1051–1052 (2011).
[Crossref]

Meas. Sci. Technol. (1)

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[Crossref]

Measurement (3)

G. L. Peng, J. He, S. P. Yang, and W. Y. Zhou, “Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells,” Measurement 58, 130–137 (2014).
[Crossref]

K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” Measurement 89, 204–214 (2016).
[Crossref]

P. Antunes, J. Dias, T. Paixao, E. Mesquita, H. Varum, and P. Andre, “Liquid level gauge based in plastic optical fiber,” Measurement 66, 238–243 (2015).
[Crossref]

Microw. Opt. Techn. (2)

P. Nath, P. Datta, and K. C. Sarma, “All fiber-optic sensor for liquid level measurement,” Microw. Opt. Techn. 50(7), 1982–1984 (2008).
[Crossref]

S. Binu, K. Kochunarayanan, V. P. M. Pillai, and N. Chandrasekaran, “PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor,” Microw. Opt. Techn. 52(9), 2114–2118 (2010).
[Crossref]

Microw. Opt. Technol. Lett. (1)

H. Z. Yang, S. W. Harun, H. Arof, and H. Ahmad, “Environment-independent liquid level sensing based on fiber-optic displacement sensors,” Microw. Opt. Technol. Lett. 53(11), 2451–2453 (2011).
[Crossref]

Opt. Commun. (3)

Y. J. Jiang, W. Jiang, B. Q. Jiang, A. Rauf, C. Qin, and J. L. Zhao, “Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber,” Opt. Commun. 351, 30–34 (2015).
[Crossref]

W. H. Zhang, Z. S. Ying, S. Yuan, and Z. R. Tong, “A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating,” Opt. Commun. 342, 243–246 (2015).
[Crossref]

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Opt. Eng. (2)

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46(11), 114401 (2007).
[Crossref]

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, W. Y. Liu, J. Liu, and J. J. Xiong, “Optical fiber liquid level sensor based on macro-bending coupling,” Opt. Fiber Technol. 24, 135–139 (2015).
[Crossref]

Opt. Lasers Eng. (2)

W. H. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
[Crossref]

Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Opt. Lasers Eng. 57, 53–57 (2014).
[Crossref]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

P. Nath, H. K. Singh, D. Tiwari, and T. Basumatry, “Fiber-optic liquid level sensor based on coupling optical path length variation,” Rev. Sci. Instrum. 83(5), 055006 (2012).
[Crossref] [PubMed]

T. Lu, Z. Li, D. Xia, K. He, and G. Zhang, “Asymmetric Fabry-Pérot fiber-optic pressure sensor for liquid-level measurement,” Rev. Sci. Instrum. 80(3), 033104 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Rizzolo, J. Perisse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Mace, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7, 8766 (2017).

Sensor. Actuat. A-Phys. (8)

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sensor. Actuat. A-Phys. 152, 248–251 (2009).

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor,” Sensor. Actuat. A-Phys. 137, 68–73 (2007).

C. N. Yang, S. P. Chen, and G. G. Yang, “Fiber optical liquid level sensor under cryogenic environment,” Sensor. Actuat. A-Phys. 94, 69–75 (2001).

E. Mesquita, T. Paixao, P. Antunes, F. Coelho, P. Ferreira, P. Andre, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sensor. Actuat. A-Phys. 240, 138–144 (2016).

H. P. Gong, H. F. Song, S. L. Zhang, K. Ni, and X. Y. Dong, “An optical liquid level sensor based on polarization-maintaining fiber modal interferometer,” Sensor. Actuat. A-Phys. 205, 204–207 (2014).

F. Perez-Ocon, A. Rubino, J. M. Abril, P. Casanova, and J. A. Martinez, “Fiber-optic liquid-level continuous gauge,” Sensor. Actuat. A-Phys. 125, 124–132 (2006).

C. Li, T. G. Ning, C. Zhang, J. Li, X. D. Wen, L. Pei, X. K. Gao, and H. Lin, “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensor. Actuat. A-Phys. 245, 49–53 (2016).
[Crossref]

C. Vazquez, A. B. Gonzalo, S. Vargas, and J. Montalvo, “Multi-sensor system using plastic optical fibers for intrinsically safe level measurements,” Sensor. Actuat. A-Phys. 116, 22–32 (2004).

Sensor. Actuat. B-Chem. (1)

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sensor. Actuat. B-Chem. 242, 577–585 (2017).

Other (3)

https://koboldusa.com/products/level/level-monitoring/opt-optical-level-switch

https://www.gemssensors.com/level/single-point-level-switches/electro-optic

H. Taylor, Method for producing reflective taps in optical fibers and applications thereof, US. patent 4,848,999 (1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 All-fiber, thermo-optic liquid level gauge: An experimental setup.
Fig. 2
Fig. 2 Typical diode drive current and signals at detector 1 during continuous, uninterrupted operation of the sensor. The recordings are taken over 2.5 s intervals and at different liquid levels (one full, 2 s long, temperature cycle is shown together with ending and starting parts of a proceeding (N-1) and a succeeding (N + 1) temperature cycles). Section with the duration between 0 and 0.25s shows the end of the cool-down sequence of the preceding (N-1) fiber’s temperature cycle, section between 0.25s-1.25 s represent a full fiber’s heat-up sequence, section between 1.25s-2.25 s represents a full fiber’s cool-down sequence, and section between 2.25s and 2.5s depicts the starting part of the heat-up sequence of the succeeding (N + 1) temperature cycle: a) Current applied to the laser diode as a function of time b) Optical power recorded at detector 1 when the test vessel is empty, c) Optical power recorded at detector 1 when the test vessel is 50% filled with water, d) Optical power recorded at detector 1 when the test vessel is fully filled with water (total OPL change here is less than half of the wavelength meaning that not even a full interference fringe is generated over full heat-up/cool down cycle).
Fig. 3
Fig. 3 Block diagram of the phase estimation algorithm.
Fig. 4
Fig. 4 An example of interference fringe processing, which was generated during fiber’s heat-up sequence (a sequence marked with “(*)” in Fig. 2(b).): a) Experimentally acquired quasi periodic cos function during fiber heat-up sequence. b) Construction of non-periodic signal. c) Reconstructed angle function.
Fig. 5
Fig. 5 Thermo-optic level gauge with dual side optical heating power delivery.
Fig. 6
Fig. 6 (a) 45 cm long liquid level sensor in the test vessel (b) 45 cm and 100 cm long liquid level sensors.
Fig. 7
Fig. 7 (a) 45 cm long gauge with single side heating power supply: Blue dots represent measured OPL variation at different liquid levels; the red curve is the calculated OPL variation (using Eq. (8) and initial calibration) as a function of liquid level; b) The same as a), but for 1 m long gauge with dual-side heating power supply (expected/calculated OPL variation was obtained according to Eq. (10)).
Fig. 8
Fig. 8 Measured level versus experimentally set level: a) 45 cm long gauge with single side heating power supply b) 100 cm long sensor with dual-side heating power supply.
Fig. 9
Fig. 9 shows the response of a 45 cm long sensor (a) and 1 m long sensors (b) when the level was raised and lowered in small consecutive steps (2 mm, 5 mm, 10 mm and 20 mm) over 60 min time interval (in this test we averaged 5 raw measured values). Measurements were complete with hall full test vessels.
Fig. 10
Fig. 10 Measured level as a function of sensor’s ambient temperature. Water level during the test was constant, about 22.4 cm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ΔOPL= P( 0 ) π k f Nu ( n dn dT )( 1 e αL ).
ΔOP L D =P 1 π k fGAS N u GAS ( n dn dT )( 1 e α L D )= q D P( 0 )( 1 e α L D ).
ΔOP L W =P e α L D π k fLIQUID N u LIQUID ( n dn dT )( 1 e α L W )= = q W P( 0 ) e α L D ( 1 e α L W ).
ΔOP L =ΔOP L D +ΔOP L W =P[ q D ( 1 e α L D )+ q W e α L D ( 1 e α L W ) ].
ΔOP L =ΔOP L D +ΔOP L W = =P[ q D ( 1 e α( L 0 L W ) )+ q W e α( L 0 L W ) ( 1 e α L W ) ].
ΔOP L dry =P[ q D ( 1 e α L 0 ) ]or q D = ΔOP L dry P( 1 e α L 0 ) .
ΔOP L wet =P[ q W ( 1 e α L 0 ) ]or q W = ΔOP L wet P( 1 e α L 0 ) .
ΔOP L =ΔOP L D +ΔOP L W = = 1 ( 1 e α L 0 ) [ ΔOP L dry ( 1 e α( L 0 L W ) )+ΔOP L wet e α( L 0 L W ) ( 1 e α L W ) ].
L W = L 0 + 1 α ln ( ΔOP L dry ΔOPL )+ e α L 0 ( ΔOPLΔOP L wet ) ( ΔOP L dry ΔOP L wet ) .
OPL= ϕ 360 λ 2 .
ΔOP L = e α L W e α( L 0 L W ) 2( 1 e α L 0 ) ( ΔOP L dry ΔOP L wet )+ + 1 2 ( ΔOP L wet +ΔOP L dry ).
L W = 1 α ln( ( 1 e α L 0 ) ( 2ΔOP L ΔOP L wet ΔOP L dry ) ( ΔOP L dry ΔOP L wet ) 2 e α L 0 + + ( ( 1 e α L 0 ) ( 2ΔOP L ΔOP L wet ΔOP L dry ) ( ΔOP L dry ΔOP L wet ) ) 2 +4 e α L 0 2 e α L 0 ).

Metrics