Abstract

Transition probability is of vital importance for luminescence process, whereas the effects of doping concentration have not been explored in the Er3+:NaGdF4. In this work, we investigate the radiative transition probabilities of Er3+ highly doped NaGdF4 sub 10 nm nanocrystals using J-O theory. It is found that the transition probabilities vary with changing Er3+ concentration, especially altering the ratio of Er3+ 2H11/2 to 4S3/2 level, which is highly useful for optical thermometers as they are thermally coupled. To validate the concentration dependent transition probabilities, significant enhancements of upconversion luminescence are achieved by epitaxial growth of the inert shell, and thermal sensing behaviors are investigated using the improved samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed

Xiaojie Xue, Shinya Uechi, Rajanish N. Tiwari, Zhongchao Duan, Meisong Liao, Masamichi Yoshimura, Takenobu Suzuki, and Yasutake Ohishi
Opt. Mater. Express 3(7) 989-999 (2013)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
    [Crossref]
  2. G. S. Ofelt, “Intensities of crystal Spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  3. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  4. L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
    [Crossref]
  5. S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
    [Crossref]
  6. O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
    [Crossref]
  7. L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
    [Crossref]
  8. H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
    [Crossref]
  9. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
    [Crossref]
  10. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
    [Crossref] [PubMed]
  11. M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
    [Crossref]
  12. C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
    [Crossref] [PubMed]
  13. X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
    [Crossref]
  14. N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
    [Crossref] [PubMed]
  15. C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
    [Crossref] [PubMed]
  16. L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
    [Crossref] [PubMed]
  17. B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
    [Crossref] [PubMed]
  18. S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
    [Crossref]
  19. D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
    [Crossref]
  20. E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
    [Crossref] [PubMed]
  21. G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
    [Crossref]
  22. X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
    [Crossref]
  23. A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
    [Crossref]
  24. L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
    [Crossref]
  25. F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
    [Crossref] [PubMed]
  26. V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
    [Crossref]
  27. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
    [Crossref]
  28. D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
    [Crossref] [PubMed]
  29. Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
    [Crossref]
  30. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref] [PubMed]
  31. L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
    [Crossref] [PubMed]
  32. L. Li, W. Xu, L. Zheng, F. Qin, Y. Zhou, Z. Liang, Z. Zhang, and W. Cao, “Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+,” Opt. Express 24(12), 13244–13249 (2016).
    [Crossref] [PubMed]
  33. L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
    [Crossref] [PubMed]
  34. S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
    [Crossref] [PubMed]

2018 (4)

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
[Crossref]

2017 (4)

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
[Crossref]

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

2016 (5)

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

L. Li, W. Xu, L. Zheng, F. Qin, Y. Zhou, Z. Liang, Z. Zhang, and W. Cao, “Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+,” Opt. Express 24(12), 13244–13249 (2016).
[Crossref] [PubMed]

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

2015 (9)

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

2014 (3)

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

2013 (2)

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

2011 (1)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

2010 (1)

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

2006 (1)

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

2004 (1)

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
[Crossref]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

1962 (2)

G. S. Ofelt, “Intensities of crystal Spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Abdelhady, A. L.

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

Afzaal, M.

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

Almutairi, A.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Arabasz, S.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

Babu, S.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Bai, Y. F.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Balabhadra, S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Banski, M.

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Berry, M. T.

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

Bettinelli, M.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Bravo, D.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Brites, C. D. S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Cai, Y.

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Cao, J. K.

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

Cao, W.

Cao, W. W.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Carlos, L. D.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Chan, E. M.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chaudhuri, J.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Chen, B.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Chen, D.

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

Chen, D. Q.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, X.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Chen, Y. H.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Cordes, D. B.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Dai, H.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Debasu, M. L.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Deng, R.

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

Devarajulu, G.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Dhoble, S. J.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Diao, S.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Ding, M. Y.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Dou, A. J.

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Duan, C. K.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Fan, X.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Fang, F.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Fischer, L. H.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Francés-Soriano, L.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Gao, M.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Gao, Z.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

García-Solé, J.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Guan, M.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Gudel, H. U.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
[Crossref]

Guo, H.

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Ha, H. M.

H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
[Crossref]

Haase, M.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
[Crossref]

Han, Y. D.

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Hao, Y. X.

Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
[Crossref]

Harms, G. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

He, S.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Heer, S.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
[Crossref]

Hoa, T. T. Q.

H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
[Crossref]

Hou, Y.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Huang, P.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

Igumnov, S. M.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Jacinto, C.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Jaque, D.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Ji, Z. G.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Jiang, G. C.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Jiang, S.

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Jin, D.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

Johnson, N. J. J.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Ju, D. D.

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kamimura, M.

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

Khaydukov, E. V.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Kompe, K.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
[Crossref]

Kumar, K. U.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Lang, C. I.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Le, V. V.

H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
[Crossref]

Lei, H.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Li, F.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, L.

Li, X. M.

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

Li, Y.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Liang, X. J.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Liang, Z.

Liao, L.

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Lin, C. K.

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

Linganna, K.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Liu, C.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Liu, D.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Liu, L.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Liu, X.

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

Long, N. N.

H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
[Crossref]

López, F. J.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Lv, S. C.

Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
[Crossref]

Ma, C.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Ma, Z. J.

Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
[Crossref]

Madanan, K.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Mai, H. X.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Malta, O. L.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Marciniak, L.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Martín Rodríguez, E.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

May, P. S.

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

Meng, Q. G.

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

Misiewicz, J.

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

Molchanova, S. I.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Nazarov, M. M.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Nechaev, A. V.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Nunes, L. A. O.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

O’Brien, P.

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal Spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Panchenko, V. Y.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Peng, D.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Pérez-Prieto, J.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Pilch, A.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

Podhorodecki, A.

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

Prasad, V. R.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Prorok, K.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Qiao, R.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Qiao, X.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Qin, F.

Qiu, B. S.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Qiu, J. R.

Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
[Crossref]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Raju, B. D. P.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Ramesh, B.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Ratnakaram, Y. C.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Ravi, O.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Reddy, C. M.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Reddy, G. R.

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

Rocha, J.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Rocha, U.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Sardar, D.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Savelyev, A. G.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Seshadri, M.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Shen, L.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Shen, L. L.

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Si, R.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Soga, K.

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

Sokolov, V. I.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Song, F.

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Song, F. F.

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Song, Y. L.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Sun, L. D.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Suyari, S.

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

Tan, Y. W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Tian, S.

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Tian, Y.

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Tyutyunov, A. A.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Ube, T.

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

Wan, Z. Y.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Wang, F.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

Wang, N.

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Wang, X. Q.

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Wang, Y. X.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Weeks, B.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Wei, X. T.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Wei, Y. L.

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

Wolfbeis, O. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Wortmann, L.

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

Xiang, W. D.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Ximendes, E. C.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Xu, W.

Xu, X.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Yan, C. H.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yan, Z. G.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yang, B.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Yang, K.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Yang, L.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Yang, W.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Yang, Z. R.

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

Yao, G.

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

Yin, M.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

You, L. P.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Zeng, J.

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Zeng, P.

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Zhang, J. J.

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Zhang, X.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Zhang, X. R.

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

Zhang, X. W.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Zhang, Y. W.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Zhang, Z.

Zhao, J.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Zhao, Z.

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Zheng, L.

Zhong, J. S.

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Zhou, A. H.

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Zhou, S. S.

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Zhou, Y.

L. Li, W. Xu, L. Zheng, F. Qin, Y. Zhou, Z. Liang, Z. Zhang, and W. Cao, “Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+,” Opt. Express 24(12), 13244–13249 (2016).
[Crossref] [PubMed]

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

Zhou, Z.

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Zvyagin, A. V.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

ACS Nano (1)

C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, and M. Gao, “Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo,” ACS Nano 7(8), 7227–7240 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the structural integrity of core-shell nanoparticles against elemental migration using luminescent lanthanide probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

CrystEngComm (1)

A. H. Zhou, F. Song, Y. D. Han, F. F. Song, D. D. Ju, and X. Q. Wang, “Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4:Yb3+/Er3+,Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing,” CrystEngComm 20(14), 2019–2035 (2018).
[Crossref]

Dalton Trans. (1)

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (2)

S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

D. Q. Chen, Z. Y. Wan, Y. Zhou, P. Huang, J. S. Zhong, M. Y. Ding, W. D. Xiang, X. J. Liang, and Z. G. Ji, “Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638(10), 21–28 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

X. M. Li, J. K. Cao, Y. L. Wei, Z. R. Yang, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics,” J. Am. Ceram. Soc. 98(12), 3824–3830 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

L. Liu, Y. X. Wang, Y. F. Bai, X. R. Zhang, K. Yang, L. Yang, and Y. L. Song, “Effects of Li+ on structure and spectroscopic properties of Er3+/Li+ codoped Sb2O3-Na2O-SiO2 glasses,” J. Appl. Phys. 107(9), 093103 (2010).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal Spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

J. Lumin. (3)

L. Wortmann, S. Suyari, T. Ube, M. Kamimura, and K. Soga, “Tuning the thermal sensitivity of β-NaYF4:Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window,” J. Lumin. 198, 236–242 (2018).
[Crossref]

O. Ravi, S. J. Dhoble, B. Ramesh, G. Devarajulu, C. M. Reddy, K. Linganna, G. R. Reddy, and B. D. P. Raju, “NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses,” J. Lumin. 164, 154–159 (2015).
[Crossref]

G. Yao, C. K. Lin, Q. G. Meng, P. S. May, and M. T. Berry, “Calculation of Judd-Ofelt parameters for Er3+ in β-NaYF4:Yb3+, Er3+ from emission intensity ratios and diffuse reflectance spectra,” J. Lumin. 160(13), 276–281 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A. L. Abdelhady, and P. O’Brien, “Selective excitation of Eu3+ in the core of small beta-NaGdF4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 801–807 (2013).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

H. M. Ha, T. T. Q. Hoa, V. V. Le, and N. N. Long, “Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals,” J. Mater. Sci. Mater. Electron. 28(1), 884–891 (2017).
[Crossref]

Mater. Res. Bull. (1)

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Nano Lett. (1)

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C. I. Lang, and D. Jin, “Optimal sensitizer concentration in single upconversion nanocrystals,” Nano Lett. 17(5), 2858–2864 (2017).
[Crossref] [PubMed]

Nano Res. (1)

X. W. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks, B. S. Qiu, K. Madanan, D. Sardar, and J. Chaudhuri, “Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window,” Nano Res. 8(2), 636–648 (2015).
[Crossref]

Nanoscale (4)

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7(41), 17261–17267 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Nat. Protoc. (1)

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

L. L. Shen, N. Wang, A. J. Dou, Y. Cai, Y. Tian, and J. J. Zhang, “Broadband ~ 3 um mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses,” Opt. Mater. 75, 274–279 (2018).
[Crossref]

Opt. Spectrosc. (1)

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

RSC Advances (2)

G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, B. Yang, and W. W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Y. X. Hao, S. C. Lv, Z. J. Ma, and J. R. Qiu, “Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry,” RSC Advances 8(22), 12165–12172 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) XRD patterns of the as-synthesized different Er-doped NaGdF4 core nanoparticles. The standard data for β-NaGdF4 (JCPDS No. 27-0699) is shown as a reference, (b) The peak shifts of the three most intensive refrections.
Fig. 2
Fig. 2 TEM images and size-distributions of (a) 20Er core with an average size of 8.0 nm, (b) 50Er core 9.3 nm, (c) 80Er core 9.1 nm, (d) 20Er C-S 15.3 nm, (e) 50Er C-S 15.5 nm, (f) 80Er C-S 14.9 nm.
Fig. 3
Fig. 3 Linear absorption coefficients of Er:NaGdF4 in the range of 420 nm to 850 nm at room temperature. Inset shows the detailed absorptions in the range of 340 nm to 420 nm.
Fig. 4
Fig. 4 (a) UC spectra of Er:NaGdF4 core NCs. (b) UC spectra of the C-S NCs with ~3 nm inert coating. (c) Comparison of red and green intensity of core and C-S NCs. (d) Schematic of the pathways of Er3+ UC processes.
Fig. 5
Fig. 5 Temperature sensing behaviors of the C-S NCs. (a) 20Er, (b) 50Er, (c) 80Er.
Fig. 6
Fig. 6 Comparison of A2/A1 value deduced by J-O calculation and C value obtained from FIR calibration.
Fig. 7
Fig. 7 Relative sensitivity (SR) and absolute sensitivity (SA) of the C-S NCs.

Tables (3)

Tables Icon

Table 1 The fitting deviation and JO parameters of various Er3+ doped NaGdF4

Tables Icon

Table 2 Spontaneous emission probability (AJJ´) of Er3+ in Er:NaGdF4

Tables Icon

Table 3 Comparison of relative sensitivity in different materials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f meas ( J J ) = m c 2 π e 2 N ε ( ν ) d ν
f calc ( J J ) = 8 π 2 m c ν 3 h ( 2 J + 1 ) ( n 2 + 2 ) 2 9 n i 2 , 4 , 6 Ω i | 4 f N ( α S L ) J U i 4 f N ( α S L ) J | 2
δ rms = [ ( q p ) 1 ( Δ f ) 2 ] 1 2
A J J = 64 π 4 e 2 3 h ( 2 J + 1 ) λ ¯ 3 n ( n 2 + 2 ) 2 9 i = 2 , 4 , 6 Ω i | 4 f N ( α S L ) J U i 4 f N ( α S L ) J | 2
F I R = I 2 I 1 = C exp ( Δ E k T ) A 2 A 1 exp ( Δ E k T )

Metrics