Abstract

Enabling laser white-lighting at a correlated color temperature (CCT) of 6500K with the use of only red/green/blue (RGB) tri-color laser diodes (LDs) is demonstrated, which can further perform wavelength division multiplexing (WDM) communication with a high-spectral-usage 16 QAM-OFDM data stream at 11.2 Gbps over 0.5 m. The sampling rate of encoded data is optimized to avoid the aliasing effect and to effectively amplify the signal with high on/off extinction and modulation depth. Proper oversampling can decrease the peak-to-average power ratio (PAPR) of the OFDM data and filter out unwanted noise. There are also six different diffusers used to diverge the white-light mixed by the RGB LD beam. By analyzing the color-casting transmittance, surface roughness, CCT uniformity, divergent angle of the diffuser, and the data transmission capacity, the frosted glass (FG2.8) diffuser with high transmittance diverges the white light with the divergent angle of ± 20° and supports the highest data rate of 14 Gbps over 0.5 m. To fit the day-light CCT, the blue LD power at an optimized bias current is further attenuated with a 0.6-optical density filter for reducing CCT from 100000K to 6500K; however, such an adjustment also degrades the SNR ratio to sacrifice the achievable data rate of the blue LD. The polycarbonate (PC1.5) diffuser with proper surface roughness diverged white-light exhibits the best CCT uniformity and a divergent angle of ± 30° but supports a data rate of only 6.4 Gbps over 0.5 m. The poly (methyl methacrylate) PMMA1.5 diffuser scatters the white light with the largest angle of ± 40°; however, the data rate also decreases to 4.8 Gbps over 0.5 m.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

Changmin Lee, Chao Shen, Clayton Cozzan, Robert M. Farrell, James S. Speck, Shuji Nakamura, Boon S. Ooi, and Steven P. DenBaars
Opt. Express 25(15) 17480-17487 (2017)

Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting

Xiaoyan Liu, Suyu Yi, Xiaolin Zhou, Shuailong Zhang, Zhilai Fang, Zhi-Jun Qiu, Laigui Hu, Chunxiao Cong, Lirong Zheng, Ran Liu, and Pengfei Tian
Opt. Express 26(15) 19259-19274 (2018)

Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication

Bilal Janjua, Hassan M. Oubei, Jose R. Durán Retamal, Tien Khee Ng, Cheng-Ting Tsai, Huai-Yung Wang, Yu-Chieh Chi, Hao-Chung Kuo, Gong-Ru Lin, Jr-Hau He, and Boon S. Ooi
Opt. Express 23(14) 18746-18753 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
    [Crossref]
  2. D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 1–10 (2014).
  3. A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
    [Crossref]
  4. A. M. Cailean, B. Cagneau, L. Chassagne, S. Topsu, Y. Alayli, and M. Dimian, “Visible light communications cooperative architecture for the intelligent transportation system,” In Proceedings of Communications and Vehicular Technology in the Benelux (SCVT) (Academic, 2013) pp. 1–5.
  5. L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
    [Crossref]
  6. J. Happich, “LED communications market worth $101.30 billion by 2024,” The eeNews EUROPE, http://www.eenewseurope.com/news/led-communications-market-worth-10130-billion-2024 .
  7. L. Wood, “Global Visible Light Communication Market - Expected to Reach $10.8 Billion by 2020 - Research and Markets,” Business Wire, https://www.businesswire.com/news/home/20171110005265/en/Global-Visible-Light-Communication-Market— .
  8. C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
    [Crossref] [PubMed]
  9. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  10. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  11. J. Vučić, C. Kottke, K. Habel, and K. D. Langer, “803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC),2011and the National Fiber Optic Engineers Conference, (Optical Society of America, 2011), paper OWB6.
    [Crossref]
  12. F. C. Wang, C. W. Tang, and B. J. Huang, “Multivariable robust control for a red–green–blue LED lighting system,” IEEE Trans. Power Electron. 25(2), 417–428 (2010).
    [Crossref]
  13. Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
    [Crossref] [PubMed]
  14. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
    [Crossref]
  15. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  16. X. Qu, S. C. Wong, and K. T. Chi, “Temperature measurement technique for stabilizing the light output of RGB LED lamps,” IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010).
    [Crossref]
  17. M. Gilewski and A. Karpiuk, “An electronic control of light RGB LEDs,” Prz. Elektrotechniczny 84(8), 194–198 (2008).
  18. T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).
  19. H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  20. Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
    [PubMed]
  21. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
    [Crossref] [PubMed]
  22. Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  23. S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
    [Crossref] [PubMed]
  24. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  25. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [Crossref] [PubMed]
  26. Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
    [PubMed]
  27. Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
    [Crossref] [PubMed]
  28. T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
    [Crossref] [PubMed]
  29. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
    [Crossref]
  30. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
    [Crossref]
  31. S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
    [Crossref]
  32. B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref] [PubMed]
  33. J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
    [Crossref] [PubMed]
  34. L. B. Hooi, “Understand RGB LED mixing ratios to realize optimal color in signs and displays,” in LEDs Magazine (Academic, 2013).
  35. E. F. Schubert, “Human eye sensitivity and photometric quantities,” in Light-emitting diodes (Academic, 2006).

2018 (1)

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

2017 (3)

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

2015 (8)

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

2014 (2)

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 1–10 (2014).

A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
[Crossref]

2013 (5)

2012 (3)

2010 (2)

F. C. Wang, C. W. Tang, and B. J. Huang, “Multivariable robust control for a red–green–blue LED lighting system,” IEEE Trans. Power Electron. 25(2), 417–428 (2010).
[Crossref]

X. Qu, S. C. Wong, and K. T. Chi, “Temperature measurement technique for stabilizing the light output of RGB LED lamps,” IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010).
[Crossref]

2009 (2)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

2008 (2)

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[Crossref]

M. Gilewski and A. Karpiuk, “An electronic control of light RGB LEDs,” Prz. Elektrotechniczny 84(8), 194–198 (2008).

2007 (1)

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Alouini, M. S.

Alouini, M.-S.

Bowers, J. E.

Cantore, M.

Chang, C. H.

Chang, J.-K.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Chen, C. Y.

Chen, H.-Y.

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Chen, L. Y.

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Chen, L.-Y.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Cheng, C.-H.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Cheng, W.-H.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Chi, K. T.

X. Qu, S. C. Wong, and K. T. Chi, “Temperature measurement technique for stabilizing the light output of RGB LED lamps,” IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010).
[Crossref]

Chi, N.

Chi, Y.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Choudhury, P.

Chow, C. W.

Ciaramella, E.

Corsini, R.

Cossu, G.

Demir, H. V.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[Crossref]

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

DenBaars, S. P.

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Duran, J. R.

Farrell, R. M.

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Faulkner, G. E.

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Gilewski, M.

M. Gilewski and A. Karpiuk, “An electronic control of light RGB LEDs,” Prz. Elektrotechniczny 84(8), 194–198 (2008).

Grobe, L.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Grzanka, S.

Haas, H.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 1–10 (2014).

Hartlieb, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

He, J. H.

He, J.-H.

Hilt, J.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Hirosaki, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Ho, C. H.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Hsieh, D.-H.

Huang, B. J.

F. C. Wang, C. W. Tang, and B. J. Huang, “Multivariable robust control for a red–green–blue LED lighting system,” IEEE Trans. Power Electron. 25(2), 417–428 (2010).
[Crossref]

Huang, C.-Y.

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Huang, D.-W.

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Huang, X.

Huang, Y.-F.

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

Janjua, B.

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Jungnickel, V.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Kao, H.-Y.

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

Karpiuk, A.

M. Gilewski and A. Karpiuk, “An electronic control of light RGB LEDs,” Prz. Elektrotechniczny 84(8), 194–198 (2008).

Kelly, A. E.

Khalid, A. M.

Kimura, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Kottke, C.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Kumar, A.

A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
[Crossref]

Kuo, H. C.

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Kuo, H.-C.

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Kyriazakos, S.

A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
[Crossref]

Langer, K.-D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Lassak, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Lee, C.

Lee, K.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Leszczynski, M.

Li, C.

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Lin, C.-Y.

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Lin, G. R.

Lin, G.-R.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Lin, H. C.

Lin, W. Y.

Lin, Y. P.

Liu, Y. L.

Lu, H. H.

Margalith, T.

Mihovska, A.

A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
[Crossref]

Minh, H. L.

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Mitomo, M.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Najda, S. P.

Nakamura, S.

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Ng, T. K.

Ng, T.-K.

Nizamoglu, S.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[Crossref]

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

O’Brien, D. C.

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Oh, S. H.

Oh, Y.

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ooi, B.

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Ooi, B. S.

Oubei, H. M.

Paraskevopoulos, A.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Park, K. H.

Perlin, P.

Prasad, R.

A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
[Crossref]

Qu, X.

X. Qu, S. C. Wong, and K. T. Chi, “Temperature measurement technique for stabilizing the light output of RGB LED lamps,” IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010).
[Crossref]

Retamal, J. R. D.

Sakuma, K.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Schulz, D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Shang, H.

Shi, J.

Speck, J. S.

Tan, M.

Tang, C. W.

F. C. Wang, C. W. Tang, and B. J. Huang, “Multivariable robust control for a red–green–blue LED lighting system,” IEEE Trans. Power Electron. 25(2), 417–428 (2010).
[Crossref]

Tao, L.

Targowski, G.

Tsai, C. T.

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Tsai, C.-T.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Tsonev, D.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 1–10 (2014).

Videv, S.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 1–10 (2014).

Wang, F. C.

F. C. Wang, C. W. Tang, and B. J. Huang, “Multivariable robust control for a red–green–blue LED lighting system,” IEEE Trans. Power Electron. 25(2), 417–428 (2010).
[Crossref]

Wang, H.-Y.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Wang, Y.

Watson, S.

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Won, E. T.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Wong, S. C.

X. Qu, S. C. Wong, and K. T. Chi, “Temperature measurement technique for stabilizing the light output of RGB LED lamps,” IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010).
[Crossref]

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Wu, H. W.

Wu, T.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Xie, R. J.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Yeh, C. H.

Yu, J.

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Zengin, G.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[Crossref]

Zhang, C.

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Appl. Phys. Lett. (2)

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[Crossref]

IEEE Commun. Mag. (1)

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-Lighting Communication with Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ Glass Covered 450-nm InGaN Laser Diode,” IEEE Photonics Technol. Lett. 36(9), 1634–1643 (2018).

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

X. Qu, S. C. Wong, and K. T. Chi, “Temperature measurement technique for stabilizing the light output of RGB LED lamps,” IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010).
[Crossref]

IEEE Trans. Power Electron. (1)

F. C. Wang, C. W. Tang, and B. J. Huang, “Multivariable robust control for a red–green–blue LED lighting system,” IEEE Trans. Power Electron. 25(2), 417–428 (2010).
[Crossref]

Opt. Express (11)

W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
[Crossref] [PubMed]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
[Crossref] [PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T.-K. Ng, H.-C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. R. D. Retamal, H. M. Oubei, B. Janjua, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, T. K. Ng, D.-H. Hsieh, H.-C. Kuo, M.-S. Alouini, J.-H. He, G.-R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 1–10 (2014).

Prz. Elektrotechniczny (1)

M. Gilewski and A. Karpiuk, “An electronic control of light RGB LEDs,” Prz. Elektrotechniczny 84(8), 194–198 (2008).

Sci. Rep. (4)

Y.-F. Huang, Y.-C. Chi, H.-Y. Kao, C.-T. Tsai, H.-Y. Wang, H.-C. Kuo, S. Nakamura, D.-W. Huang, and G.-R. Lin, “Blue laser diode enforces free-space transmission up to 18 Gbps over 16 m,” Sci. Rep. 7(1), 1–8 (2017).
[PubMed]

Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin, H.-Y. Chen, C.-Y. Huang, J.-H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H.-C. Kuo, and G.-R. Lin, “Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication,” Sci. Rep. 5(18690), 18690 (2015).
[PubMed]

Y.-C. Chi, Y.-F. Huang, T.-C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet laser diode enables lighting communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, “Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Wirel. Pers. Commun. (1)

A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, “Visible light communications (VLC) for ambient assisted living,” Wirel. Pers. Commun. 78(3), 1699–1717 (2014).
[Crossref]

Other (6)

A. M. Cailean, B. Cagneau, L. Chassagne, S. Topsu, Y. Alayli, and M. Dimian, “Visible light communications cooperative architecture for the intelligent transportation system,” In Proceedings of Communications and Vehicular Technology in the Benelux (SCVT) (Academic, 2013) pp. 1–5.

J. Vučić, C. Kottke, K. Habel, and K. D. Langer, “803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC),2011and the National Fiber Optic Engineers Conference, (Optical Society of America, 2011), paper OWB6.
[Crossref]

J. Happich, “LED communications market worth $101.30 billion by 2024,” The eeNews EUROPE, http://www.eenewseurope.com/news/led-communications-market-worth-10130-billion-2024 .

L. Wood, “Global Visible Light Communication Market - Expected to Reach $10.8 Billion by 2020 - Research and Markets,” Business Wire, https://www.businesswire.com/news/home/20171110005265/en/Global-Visible-Light-Communication-Market— .

L. B. Hooi, “Understand RGB LED mixing ratios to realize optimal color in signs and displays,” in LEDs Magazine (Academic, 2013).

E. F. Schubert, “Human eye sensitivity and photometric quantities,” in Light-emitting diodes (Academic, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The application of Li-Fi in smart house. (b) The picture and (c) experimental setup of 0.5-m RGB LDs WDM VLC system.
Fig. 2
Fig. 2 (a) The P-I, (b) dP/dI, (c) V-I and (d) dV/dI of RGB LDs. (e) The CIE coordinates and optical spectra of the RGB-LDs white lights diverged by the different diffusers with OD filter for attenuating the BLD power at different O.D. values. (f) The CIE 1931 color space and the CIE coordinates of the used RGB LDs.
Fig. 3
Fig. 3 (upper) The vertical and horizontal CCT uniformities and (down) the angle-dependent illuminations of the RGB LDs mixed white light diverged by the (a) FG2.8, (b) PC0.5, (c) PC1.0, (d) PC1.5, (e) PMMA1.0 and (f) PMMA1.5 diffusers.
Fig. 4
Fig. 4 (a) The subcarrier SNRs and related constellation plots of 1.4-/0.4-/0.6-GHz 16-QAM OFDM data carried by the R/G/B LDs at different sampling rates. (b) The PAPR of the 16-QAM OFDM data at the same bandwidth and different sampling rate.
Fig. 5
Fig. 5 (a) The RF spectra of 1.4-, 0.4- and 0.6-GHz 16-QAM OFDM data carried by the RLD, GLD and BLD, respectively, at different sampling rates. (b) The subcarrier SNRs of the 16-QAM OFDM data carried by the RLD, GLD and BLD beams for mixing and diverging into white light by different diffusers.
Fig. 6
Fig. 6 UV-VIS transmittance spectra of the diffusers.
Fig. 7
Fig. 7 (a) With the use of FG2.8 diffuser, the images of RGB-LD mixed and diverged at CCT = 6500K. (b) The received constellation related plots and spectrum of 1.1-, 1-, 0.8 and 0.4-GHz 16-QAM OFDM data carried by the RGB-LDs beam diverged with different diffusers in the WDM Wi-Fi system.
Fig. 8
Fig. 8 (a) The achievable bit rate and (b) the related subcarrier SNRs of the 16-QAM OFDM data carried by the BLD beam within the proposed white light diverged by the FG2.8 and attenuated at different O.D. values.

Tables (1)

Tables Icon

Table 1 The RGB LDs ratios, illuminations, materials, surface roughness, thickness, CCT variety, CIE coordinates and data rates of maximum and at CCT of 6500K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Bandwidth= Samplingrate FFTsize ×Subcarriernumber.

Metrics