Abstract

We report on femtosecond optical pump-probe measurements of ultrafast electron dynamics to detect the presence of gratings buried underneath optically opaque gold layers. Electron energy diffusion and cooling are found to be strongly affected by the presence and type of metal buried below the gold layer. As a result, the spatially periodic buried grating is encoded on the electron temperature near the top surface, leading to a spatially periodic modulation of the optical properties near the gold surface from which a delayed probe pulse can be diffracted. Our measurements show that these effects may be useful for optical detection and alignment applications in semiconductor device manufacturing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons

Mariusz Lejman, Viktor Shalagatskyi, Oleksandr Kovalenko, Thomas Pezeril, Vasily V. Temnov, and Pascal Ruello
J. Opt. Soc. Am. B 31(2) 282-290 (2014)

Ultrafast spatiotemporal relaxation dynamics of excited electrons in a metal nanostructure detected by femtosecond-SNOM

Zhi Li, Song Yue, Jianjun Chen, and Qihuang Gong
Opt. Express 18(13) 14232-14237 (2010)

Ultrafast pump-probe surface plasmon resonance spectroscopy of thin gold films

A. Devizis, V. Vaicikauskas, and V. Gulbinas
Appl. Opt. 45(11) 2535-2539 (2006)

References

  • View by:
  • |
  • |
  • |

  1. T. Avanesian and P. Christopher, “Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces,” J. Phys. Chem. C 118, 28017–28031 (2014).
    [Crossref]
  2. J. W. Gadzuk, “Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption,” Chem. Phys. 251, 87–97 (2000).
    [Crossref]
  3. O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
    [Crossref]
  4. P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
    [Crossref]
  5. P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
    [Crossref] [PubMed]
  6. G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
    [Crossref]
  7. G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572–2574 (2011).
    [Crossref] [PubMed]
  8. F. Kadlec, P. Kužel, and J. -L. Coutaz, “Optical rectification at metal surfaces,” Opt. Lett. 29, 2674–2676 (2004).
    [Crossref] [PubMed]
  9. F. Kadlec, P. Kužel, and J. -L Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30, 1402–1404 (2005).
    [Crossref] [PubMed]
  10. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
    [Crossref]
  11. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
    [Crossref] [PubMed]
  12. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
    [Crossref]
  13. C. Suarez, W. E. Bron, and T. Juhasz, “Dynamics and transport of electronic carriers in thin gold films,” Phys. Rev. Lett. 75, 4536–4539 (1995).
    [Crossref] [PubMed]
  14. J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
    [Crossref]
  15. J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
    [Crossref]
  16. M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
    [Crossref]
  17. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
    [Crossref] [PubMed]
  18. J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
    [Crossref]
  19. P. E. Hopkins and P. M. Norris, “Substrate influence in electron–phonon coupling measurements in thin Au films,” Applied Surface Science 253, 6289–6294 (2007).
    [Crossref]
  20. T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
    [Crossref]
  21. T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transfer 35, 719–726 (1992).
    [Crossref]
  22. A. N. Smith and P. M. Norris, “Influence of intraband transitions on the electron thermoreflectance response of metals,” Appl. Phys. lett. 78, 1240–1242 (2001).
    [Crossref]
  23. P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” J. Appl. Phys. 105, 023710 (2009).
    [Crossref]
  24. T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
    [Crossref]
  25. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082(R) (1992).
    [Crossref]
  26. W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
    [Crossref]
  27. A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
    [Crossref]
  28. J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
    [Crossref]
  29. S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
    [Crossref] [PubMed]
  30. M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
    [Crossref]
  31. C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
    [Crossref]
  32. C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
    [Crossref]
  33. T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal film,” Appl. Phys. Lett. 74, 1344–1346 (1999).
    [Crossref]
  34. A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).
  35. W. Wang and D. G. Cahill, “Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu,” Phys. Rev. Lett. 109, 175503 (2012).
    [Crossref] [PubMed]
  36. G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 051603 (2014).
    [Crossref]
  37. G. -M. Choi, R. B. Wilson, and D. G. Cahill, “Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer,” Phys. Rev. B 89, 064307 (2014).
    [Crossref]
  38. A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
    [Crossref]
  39. A. Guerra, W. E. Bron, and C. Suárez, “Imaging metallic multilayer structures through ultrafast optically driven excited electron transport,” Appl. Phys. B 68, 405–409 (1999).
    [Crossref]
  40. A. J. den Boef, “Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing,” Surf. Topogr. Metrol. Prop. 4, 023001 (2016).
    [Crossref]
  41. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings, (Springer, 1986).
    [Crossref]
  42. M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
    [Crossref]
  43. M. Lejman, V. Shalagatskyi, O. Kovalenko, T. Pezeril, V. V. Temnov, and P. Ruello, “Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons,” J. Opt. Soc. Am. B 31, 282–290 (2014).
    [Crossref]
  44. T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
    [Crossref]
  45. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)(Sov. Phys. JETP 39, 375–377 (1974)).
  46. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
    [Crossref] [PubMed]
  47. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
    [Crossref]
  48. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]

2016 (1)

A. J. den Boef, “Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing,” Surf. Topogr. Metrol. Prop. 4, 023001 (2016).
[Crossref]

2015 (2)

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

2014 (6)

T. Avanesian and P. Christopher, “Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces,” J. Phys. Chem. C 118, 28017–28031 (2014).
[Crossref]

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 051603 (2014).
[Crossref]

G. -M. Choi, R. B. Wilson, and D. G. Cahill, “Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer,” Phys. Rev. B 89, 064307 (2014).
[Crossref]

M. Lejman, V. Shalagatskyi, O. Kovalenko, T. Pezeril, V. V. Temnov, and P. Ruello, “Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons,” J. Opt. Soc. Am. B 31, 282–290 (2014).
[Crossref]

2013 (1)

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

2012 (1)

W. Wang and D. G. Cahill, “Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu,” Phys. Rev. Lett. 109, 175503 (2012).
[Crossref] [PubMed]

2011 (2)

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572–2574 (2011).
[Crossref] [PubMed]

2010 (1)

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

2009 (1)

P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” J. Appl. Phys. 105, 023710 (2009).
[Crossref]

2008 (2)

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
[Crossref]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[Crossref]

2007 (1)

P. E. Hopkins and P. M. Norris, “Substrate influence in electron–phonon coupling measurements in thin Au films,” Applied Surface Science 253, 6289–6294 (2007).
[Crossref]

2005 (1)

2004 (2)

F. Kadlec, P. Kužel, and J. -L. Coutaz, “Optical rectification at metal surfaces,” Opt. Lett. 29, 2674–2676 (2004).
[Crossref] [PubMed]

W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
[Crossref]

2001 (1)

A. N. Smith and P. M. Norris, “Influence of intraband transitions on the electron thermoreflectance response of metals,” Appl. Phys. lett. 78, 1240–1242 (2001).
[Crossref]

2000 (3)

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

J. W. Gadzuk, “Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption,” Chem. Phys. 251, 87–97 (2000).
[Crossref]

1999 (3)

J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
[Crossref]

A. Guerra, W. E. Bron, and C. Suárez, “Imaging metallic multilayer structures through ultrafast optically driven excited electron transport,” Appl. Phys. B 68, 405–409 (1999).
[Crossref]

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal film,” Appl. Phys. Lett. 74, 1344–1346 (1999).
[Crossref]

1997 (3)

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
[Crossref]

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

1995 (2)

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[Crossref]

C. Suarez, W. E. Bron, and T. Juhasz, “Dynamics and transport of electronic carriers in thin gold films,” Phys. Rev. Lett. 75, 4536–4539 (1995).
[Crossref] [PubMed]

1994 (1)

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

1993 (2)

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

1992 (5)

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transfer 35, 719–726 (1992).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
[Crossref]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082(R) (1992).
[Crossref]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
[Crossref] [PubMed]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[Crossref]

1990 (1)

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

1988 (1)

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
[Crossref] [PubMed]

1987 (2)

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
[Crossref] [PubMed]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)(Sov. Phys. JETP 39, 375–377 (1974)).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Acioli, L. H.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

Adam, A. J. L.

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)(Sov. Phys. JETP 39, 375–377 (1974)).

Audoin, B.

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
[Crossref]

Avanesian, T.

T. Avanesian and P. Christopher, “Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces,” J. Phys. Chem. C 118, 28017–28031 (2014).
[Crossref]

Bauer, M.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Becker, U.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Bokor, J.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
[Crossref] [PubMed]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[Crossref]

Bonn, M.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Bonner, C. E.

W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
[Crossref]

Bost, P.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Bron, W. E.

A. Guerra, W. E. Bron, and C. Suárez, “Imaging metallic multilayer structures through ultrafast optically driven excited electron transport,” Appl. Phys. B 68, 405–409 (1999).
[Crossref]

C. Suarez, W. E. Bron, and T. Juhasz, “Dynamics and transport of electronic carriers in thin gold films,” Phys. Rev. Lett. 75, 4536–4539 (1995).
[Crossref] [PubMed]

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
[Crossref]

Brorson, S. D.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

Brunel, F.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
[Crossref] [PubMed]

Burgermeister, R.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Cahill, D. G.

G. -M. Choi, R. B. Wilson, and D. G. Cahill, “Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer,” Phys. Rev. B 89, 064307 (2014).
[Crossref]

W. Wang and D. G. Cahill, “Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu,” Phys. Rev. Lett. 109, 175503 (2012).
[Crossref] [PubMed]

Celli, V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[Crossref]

Chen, A.

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Chen, A. M.

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Cheng, T. K.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

Chigarev, N.

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
[Crossref]

Choi, G. -M.

G. -M. Choi, R. B. Wilson, and D. G. Cahill, “Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer,” Phys. Rev. B 89, 064307 (2014).
[Crossref]

Christopher, P.

T. Avanesian and P. Christopher, “Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces,” J. Phys. Chem. C 118, 28017–28031 (2014).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Conrad, U.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[Crossref]

Corkum, P. B.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
[Crossref] [PubMed]

Coutaz, J. -L

Coutaz, J. -L.

Crimmins, T. F.

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal film,” Appl. Phys. Lett. 74, 1344–1346 (1999).
[Crossref]

Czajkowsky, D. M.

J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
[Crossref]

Dehoux, T.

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
[Crossref]

den Boef, A. J.

A. J. den Boef, “Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing,” Surf. Topogr. Metrol. Prop. 4, 023001 (2016).
[Crossref]

Denzler, D. N.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Ding, D.

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Ding, D. J.

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Dresselhaus, G.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

Dresselhaus, M. S.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

Eichler, H. J.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings, (Springer, 1986).
[Crossref]

Elsayed-Ali, H. E.

W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
[Crossref]

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
[Crossref] [PubMed]

Face, D. W.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

Fann, W. S.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
[Crossref] [PubMed]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[Crossref]

Feldmann, J.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Fujimoto, J. G.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

Funk, S.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Gadzuk, J. W.

J. W. Gadzuk, “Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption,” Chem. Phys. 251, 87–97 (2000).
[Crossref]

Groeneveld, R. H. M.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082(R) (1992).
[Crossref]

Grosenick, D.

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[Crossref]

Güdde, J.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

Guerra, A.

A. Guerra, W. E. Bron, and C. Suárez, “Imaging metallic multilayer structures through ultrafast optically driven excited electron transport,” Appl. Phys. B 68, 405–409 (1999).
[Crossref]

Günter, P.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings, (Springer, 1986).
[Crossref]

Guo, J.

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

Gusev, V. E.

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

Hohlfeld, J.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
[Crossref]

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[Crossref]

Hohlfeld, Julius

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Hopkins, P. E.

P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” J. Appl. Phys. 105, 023710 (2009).
[Crossref]

P. E. Hopkins and P. M. Norris, “Substrate influence in electron–phonon coupling measurements in thin Au films,” Applied Surface Science 253, 6289–6294 (2007).
[Crossref]

Hostetler, J. L.

J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
[Crossref]

Hu, X. H.

T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
[Crossref]

Ibrahim, W. M. G.

W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
[Crossref]

Ippen, E. P.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

Jähnke, V.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

Jiang, Y.

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Jiang, Y. F.

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Jin, M.

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Jin, M. X.

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juhasz, T.

C. Suarez, W. E. Bron, and T. Juhasz, “Dynamics and transport of electronic carriers in thin gold films,” Phys. Rev. Lett. 75, 4536–4539 (1995).
[Crossref] [PubMed]

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
[Crossref]

Kadlec, F.

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)(Sov. Phys. JETP 39, 375–377 (1974)).

Kassebaum, J. L.

P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” J. Appl. Phys. 105, 023710 (2009).
[Crossref]

Kazeroonian, A.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

Kovalenko, O.

Kumar, N.

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

Kužel, P.

Lagendijk, A.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082(R) (1992).
[Crossref]

Larciprete, M. C.

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Lejman, M.

Lemmer, U.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Lin, Z.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[Crossref]

Liu, H.

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Matsuda, O.

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Matthias, E.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
[Crossref]

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[Crossref]

Maznev, A. A.

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal film,” Appl. Phys. Lett. 74, 1344–1346 (1999).
[Crossref]

Mennig, M.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Moodera, J. S.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

Mourou, G. A.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
[Crossref] [PubMed]

Müller, J.G.

J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
[Crossref]

Nelson, K. A.

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal film,” Appl. Phys. Lett. 74, 1344–1346 (1999).
[Crossref]

Norris, P. M.

P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” J. Appl. Phys. 105, 023710 (2009).
[Crossref]

P. E. Hopkins and P. M. Norris, “Substrate influence in electron–phonon coupling measurements in thin Au films,” Applied Surface Science 253, 6289–6294 (2007).
[Crossref]

A. N. Smith and P. M. Norris, “Influence of intraband transitions on the electron thermoreflectance response of metals,” Appl. Phys. lett. 78, 1240–1242 (2001).
[Crossref]

J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
[Crossref]

Norris, T. B.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
[Crossref] [PubMed]

Oberli, D.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Pawlik, S.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)(Sov. Phys. JETP 39, 375–377 (1974)).

Perner, M.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Pessot, M. A.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
[Crossref] [PubMed]

Pezeril, T.

Planken, P. C. M.

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572–2574 (2011).
[Crossref] [PubMed]

Pohl, D. W.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings, (Springer, 1986).
[Crossref]

Qiu, T. Q.

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transfer 35, 719–726 (1992).
[Crossref]

Ramakrishnan, G.

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572–2574 (2011).
[Crossref] [PubMed]

Ramanandan, G. K. P.

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

Rossignol, C.

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
[Crossref]

Ruello, P.

Schmidt, H.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Schmitt, M.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Shalagatskyi, V.

Shao, J.

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

Sherman, N. K.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
[Crossref] [PubMed]

Shi, Y.

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Shinn, M.

W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
[Crossref]

Siegmann, H. C.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Smith, A. N.

A. N. Smith and P. M. Norris, “Influence of intraband transitions on the electron thermoreflectance response of metals,” Appl. Phys. lett. 78, 1240–1242 (2001).
[Crossref]

J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
[Crossref]

Smith, G. O.

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

Sprik, R.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082(R) (1992).
[Crossref]

Srinivasan-Rao, T.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
[Crossref] [PubMed]

Storz, R.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
[Crossref] [PubMed]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[Crossref]

Suarez, C.

C. Suarez, W. E. Bron, and T. Juhasz, “Dynamics and transport of electronic carriers in thin gold films,” Phys. Rev. Lett. 75, 4536–4539 (1995).
[Crossref] [PubMed]

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

Suárez, C.

A. Guerra, W. E. Bron, and C. Suárez, “Imaging metallic multilayer structures through ultrafast optically driven excited electron transport,” Appl. Phys. B 68, 405–409 (1999).
[Crossref]

Sui, L.

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Sui, L. Z.

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Sun, C. -K.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

Sun, C.-K.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

Temnov, V. V.

Tien, C. L.

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transfer 35, 719–726 (1992).
[Crossref]

Tom, H. W. K.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[Crossref]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
[Crossref] [PubMed]

Tsibidis, G. D.

G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 051603 (2014).
[Crossref]

Vallée, F.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

von Plessen, G.

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

Voti, R. L.

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Wang, D.

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

Wang, T.

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

Wang, W.

W. Wang and D. G. Cahill, “Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu,” Phys. Rev. Lett. 109, 175503 (2012).
[Crossref] [PubMed]

Weber, W.

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

Wellershoff, S. -Svante

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Wellershoff, S.-S.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
[Crossref]

Wilson, R. B.

G. -M. Choi, R. B. Wilson, and D. G. Cahill, “Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer,” Phys. Rev. B 89, 064307 (2014).
[Crossref]

Wolf, M.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Wright, O. B.

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Xu, H. F.

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Yang, D.

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Zhigilei, L. V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[Crossref]

Appl. Phys. A (2)

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[Crossref]

J. Guo, T. Wang, D. Wang, J. Shao, A. Chen, and M. Jin, “Simulation of thermionic emission optimization in femtosecond laser irradiation metal film by two-layer structure,” Appl. Phys. A 117, 1367–1374 (2014).
[Crossref]

Appl. Phys. B (2)

A. Guerra, W. E. Bron, and C. Suárez, “Imaging metallic multilayer structures through ultrafast optically driven excited electron transport,” Appl. Phys. B 68, 405–409 (1999).
[Crossref]

J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).
[Crossref]

Appl. Phys. lett. (1)

A. N. Smith and P. M. Norris, “Influence of intraband transitions on the electron thermoreflectance response of metals,” Appl. Phys. lett. 78, 1240–1242 (2001).
[Crossref]

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal film,” Appl. Phys. Lett. 74, 1344–1346 (1999).
[Crossref]

G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 051603 (2014).
[Crossref]

Appl. Surf. Sci. (1)

A. M. Chen, H. F. Xu, Y. F. Jiang, L. Z. Sui, D. J. Ding, H. Liu, and M. X. Jin, “Modeling of femtosecond laser damage threshold on the two-layer metal films,” Appl. Surf. Sci. 257, 1678–1683 (2010).
[Crossref]

Applied Optics (1)

J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Applied Optics 38, 3614–3620 (1999).
[Crossref]

Applied Surface Science (1)

P. E. Hopkins and P. M. Norris, “Substrate influence in electron–phonon coupling measurements in thin Au films,” Applied Surface Science 253, 6289–6294 (2007).
[Crossref]

Chem. Phys. (2)

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

J. W. Gadzuk, “Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption,” Chem. Phys. 251, 87–97 (2000).
[Crossref]

Int. J. Heat Mass Transfer (2)

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transfer 35, 719–726 (1992).
[Crossref]

W. M. G. Ibrahim, H. E. Elsayed-Ali, C. E. Bonner, and M. Shinn, “Ultrafast investigation of electron dynamics in multi-layer metals,” Int. J. Heat Mass Transfer 47, 2261–2268 (2004).
[Crossref]

J. Appl. Phys. (1)

P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” J. Appl. Phys. 105, 023710 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

T. Avanesian and P. Christopher, “Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces,” J. Phys. Chem. C 118, 28017–28031 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

G. K. P. Ramanandan, G. Ramakrishnan, N. Kumar, A. J. L. Adam, and P. C. M. Planken, “Emission of terahertz pulses from nanostructured metal surfaces,” J. Phys. D: Appl. Phys. 47, 374003 (2014).
[Crossref]

J.Opt. (1)

A. M. Chen, Y. F. Jiang, L. Z. Sui, H. Liu, M. X. Jin, and D. J. Ding, “Thermal analysis of double-layer metal films during femtosecond laser heating,” J.Opt. 13, 055503 (2011).

Opt. Lett. (3)

Phys. Rev. B (11)

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics,” Phys. Rev. B 77, 214307 (2008).
[Crossref]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

G. -M. Choi, R. B. Wilson, and D. G. Cahill, “Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer,” Phys. Rev. B 89, 064307 (2014).
[Crossref]

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12365–12368 (1993).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, and W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819–13822(R) (1992).
[Crossref]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082(R) (1992).
[Crossref]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[Crossref]

T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491(R) (1993).
[Crossref]

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. -Svante Wellershoff, and Julius Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[Crossref]

Phys. Rev. Lett. (9)

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
[Crossref] [PubMed]

C. Suarez, W. E. Bron, and T. Juhasz, “Dynamics and transport of electronic carriers in thin gold films,” Phys. Rev. Lett. 75, 4536–4539 (1995).
[Crossref] [PubMed]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992).
[Crossref] [PubMed]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, “Ultrafast spin-dependent electron dynamics in fcc Co,” Phys. Rev. Lett. 79, 5158–5161 (1997).
[Crossref]

W. Wang and D. G. Cahill, “Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu,” Phys. Rev. Lett. 109, 175503 (2012).
[Crossref] [PubMed]

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988).
[Crossref] [PubMed]

M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997).
[Crossref]

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987).
[Crossref] [PubMed]

Surf. Topogr. Metrol. Prop. (1)

A. J. den Boef, “Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing,” Surf. Topogr. Metrol. Prop. 4, 023001 (2016).
[Crossref]

Thin Solid Films (1)

A. Chen, L. Sui, Y. Shi, Y. Jiang, D. Yang, H. Liu, M. Jin, and D. Ding, “Ultrafast investigation of electron dynamics in the gold-coated two-layer metal film,” Thin Solid Films 529, 209–216 (2013).
[Crossref]

Ultrasonics (2)

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

Zh. Eksp. Teor. Fiz. (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)(Sov. Phys. JETP 39, 375–377 (1974)).

Other (1)

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings, (Springer, 1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the experimental setup: components include a non-linear optical crystal (BBO), Half Wave Plate (HWP) and a Photodiode (D). The two frequency-doubled 400 nm pump pulses are focused onto the sample at the same position, but under different angles to form a spatially periodic intensity pattern. The 800 nm probe pulse that diffracts off the resulting grating in the optical constants of the sample, is recorded by the detectors while the delay line is used to change the pump-probe delay.
Fig. 2
Fig. 2 Diffracted front-probe and back-probe signal as a function of pump-probe delay at various pump fluences for (a) 45 nm gold layer and (b) 100 nm gold layer. The samples were pumped from the air-gold side and probed from the air-Au side (front probe) and the glass-Au side (back probe).
Fig. 3
Fig. 3 (a) The measured front-probe diffracted signal vs. pump-probe delay for a pump fluence of 0.80 mJ/cm2 on a sample with 30 nm Pt under 30 nm Au. (b) The experimentally measured front-probe diffracted signal vs. pump-probe delay on a sample with 5 nm Pt under 150 nm Au. (c) The numerically calculated electron temperature Te vs. time for the sample with 30 nm Pt under 30 nm Au. (d) The numerically calculated Te vs. time for the sample with 5 nm Pt under 150 nm Au.
Fig. 4
Fig. 4 The measured diffracted signal from the front-probe (red) and back-probe (black) for a pump fluence of 0.80 mJ/cm2 on a sample with 30 nm Pt under 30 nm Au.
Fig. 5
Fig. 5 (a) The measured front-probe diffracted signal vs. pump-probe delay for a pump fluence of 0.96 mJ/cm2 on bilayer samples with different thicknesses of platinum (0, 2, 5, 15, 30 nm) buried under 50 nm gold, (b) The numerically calculated electron temperature Te vs. time for these samples using the same pump fluence as used in the experiment.
Fig. 6
Fig. 6 (a) The measured front-probe diffracted signal vs. time for a pump fluence 0.80 mJ/cm2 for bilayer samples with different materials buried under 50 nm Au. (b) The numerically calculated electron temperature Te vs. time for the same pump fluence as used in the experiments.
Fig. 7
Fig. 7 (a) The schematic of the experimental setup. The single 400 nm pump pulse illuminates the flat 100 nm Au from the glass side. The probe pulse diffracts off the spatially periodic electron temperature that is created due to the difference in the electron diffusion behavior caused by the 40 nm Au/Cu. Schematic of the electron temperature after 1 ps is shown using the colour scheme. (b) The measured diffracted signal vs. time from the glass-Au interface for a pump fluence of 0.80 mJ/cm2. (c) Numerically calculated electron temperature Te vs. time for 100 nm Au (black), 140 nm Au (green) and 100 nm Au (red) on 40 nm Cu for a pump fluence of 0.80 mJ/cm2. (d) The difference between the calculated Te for 100 nm Au and 140 nm gives the green curve. This is similar to the measured green curve from a 100 nm Au with 40 nm Au grating underneath. The difference between the calculated Te for 100 nm Au and 140 nm Au/40 nm Cu gives the red curve. This is similar to the measured red curve from a 100 nm Au with 40 nm Cu grating underneath.
Fig. 8
Fig. 8 Geometry used for the calculation: Material 1 and 4 have an infinite extent to the left and right side respectively. Material 2 and 3 have a finite thickness of l2 and l3 respectively. The electromagnetic wave originating from material 1 propagates through all four materials after undergoing partial reflection and transmission at each interface.
Fig. 9
Fig. 9 Diffracted front-probe signal vs. pump-probe delay for different gold thicknesses at a pump fluence of 0.8 mJ/cm2.

Tables (1)

Tables Icon

Table 1 Material constants used in our two temperature model calculations. Listed are the electron-phonon coupling constant g, electron specific heat constant Ae, thermal conductivity K0 at T = 273 K and lattice heat capacity Cl. [10, 46–48]. We have used the relations Ce = AeTe and Ke = K0 × Te/Tl [10].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = E 0 ( t ) { ( e i k 1 z + r e i k 1 z ) x ^ , z < 0 ( a e i k 2 z + b e i k 2 z ) x ^ , 0 < z < l 2 ( c e i k 3 ( z l 2 ) + d e i k 3 ( z l 2 ) ) x ^ , l 2 < z < ( l 2 + l 3 ) t ( e i k 4 ( z ( l 2 + l 3 ) ) ) x ^ , z > ( l 2 + l 3 )
H ( z , t ) = E 0 ( t ) ω μ { k 1 ( e i k 1 z r e i k 1 z ) y ^ , z < 0 k 2 ( a e i k 2 z b e i k 2 z ) y ^ , 0 < z < l 2 k 3 ( c e i k 3 ( z l 2 ) d e i k 3 ( z l 2 ) ) y ^ , l 2 < z < ( l 2 + l 3 ) k 4 ( t e i k 4 ( z ( l 2 + l 3 ) ) ) y ^ , z > ( l 2 + l 3 )
E 0 ( z , t ) = A e 4 ln 2 ( t / τ p ) 2 ) × e ( i ω t ) ,
u t = S ,
C e ( T e ) T e t = z ( K e z T e ) g ( T e T l ) + u t
C l T l t = g ( T e T l ) .

Metrics