Abstract

Usually, the hyperparallel quantum computation can speed up quantum computing, reduce the quantum resource consumed largely, resist to noise, and simplify the storage of quantum information. Here, we present the first scheme for the self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom of photon systems simultaneously. It can prevent bit-flip errors from happening with an imperfect nonlinear interaction in the nearly realistic condition. We give the way to design the universal hyperparallel photonic quantum controlled-NOT (CNOT) gate on a two-photon system, resorting to the nonlinear interaction between the circularly polarized photon and the electron spin in the quantum dot in a double-sided microcavity system, by taking the imperfect interaction in the nearly realistic condition into account. Its self-error-corrected pattern prevents the bit-flip errors from happening in the hyperparallel quantum CNOT gate, guarantees the robust fidelity, and relaxes the requirement for its experiment. Meanwhile, this scheme works in a failure-heralded way. Also, we generalize this approach to achieve the self-error-corrected hyperparallel quantum CNOTN gate working on a multiple-photon system. These good features make this scheme more useful in the photonic quantum computation and quantum communication in the future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust hybrid hyper-controlled-not gates assisted by an input-output process of low-Q cavities

Fang-Fang Du and Zhen-Rong Shi
Opt. Express 27(13) 17493-17506 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, S. Goldwasser, ed. (IEEE Computer Society Press, 1994), pp. 124–134.
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
    [Crossref]
  3. G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
    [Crossref]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  5. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
    [Crossref] [PubMed]
  6. Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305 (2008).
    [Crossref]
  7. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
    [Crossref]
  8. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
    [Crossref] [PubMed]
  9. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [Crossref]
  10. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [Crossref] [PubMed]
  11. H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [Crossref] [PubMed]
  12. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
    [Crossref] [PubMed]
  13. Y. H. Kang, Y. Xia, and P. M. Lu, “Two-photon phase gate with linear optical elements and atom-cavity system,” Quantum Inf. Process. 15, 4521–4535 (2016).
    [Crossref]
  14. D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
    [Crossref]
  15. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
    [Crossref] [PubMed]
  16. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref] [PubMed]
  17. A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003).
    [Crossref] [PubMed]
  18. H. F. Wang, A. D. Zhu, and S. Zhang, “One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities,” Opt. Lett. 39, 1489–1492 (2014).
    [Crossref] [PubMed]
  19. Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
    [Crossref] [PubMed]
  20. J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
    [Crossref] [PubMed]
  21. W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
    [Crossref]
  22. J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
    [Crossref]
  23. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
    [Crossref]
  24. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [Crossref]
  25. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [Crossref]
  26. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [Crossref]
  27. H. R. Wei and F. G Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
    [Crossref] [PubMed]
  28. T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
    [Crossref]
  29. T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
    [Crossref] [PubMed]
  30. H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
    [Crossref]
  31. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
    [Crossref] [PubMed]
  32. D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy,” Proc. Natl. Acad. Sci. United States Am. 94, 1634–1639 (1997).
    [Crossref]
  33. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
    [Crossref]
  34. R. Schack and C. M. Caves, “Classical model for bulk-ensemble NMR quantum computation,” Phys. Rev. A 60, 4354–4362 (1999).
    [Crossref]
  35. J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
    [Crossref] [PubMed]
  36. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
    [Crossref] [PubMed]
  37. Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
    [Crossref]
  38. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref] [PubMed]
  39. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
    [Crossref] [PubMed]
  40. A. R. C. Pinheiro, C. E. R. Souza, D. P. Caetano, J. A. O. Huguenin, A. G. M. Schmidt, and A. Z. Khoury, “Vector vortex implementation of a quantum game,” J. Opt. Soc. Am. B 30, 3210–3214 (2013).
    [Crossref]
  41. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40, 4887–4890 (2015).
    [Crossref] [PubMed]
  42. W. F. Balthazar, C. E. R. Souza, D. P. Caetano, E. F. Galvão, J. A. O. Huguenin, and A. Z. Khoury, “Tripartite nonseparability in classical optics,” Opt. Lett. 41, 5797–5800 (2016).
    [Crossref] [PubMed]
  43. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
    [Crossref]
  44. D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,” Phys. Rev. A 91, 062303 (2015).
    [Crossref]
  45. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [Crossref]
  46. C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).
  47. M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
    [Crossref]
  48. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
    [Crossref]
  49. A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
    [Crossref] [PubMed]
  50. D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).
  51. Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).
  52. B. Coutinho dos Santos, K. Dechoum, and A. Z. Khoury, , “Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum,” Phys. Rev. Lett. 103, 230503 (2009).
    [Crossref]
  53. K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
    [Crossref]
  54. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
    [Crossref]
  55. B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
    [Crossref]
  56. T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
    [Crossref]
  57. B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
    [Crossref]
  58. T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
    [Crossref]
  59. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [Crossref]
  60. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
    [Crossref] [PubMed]
  61. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
    [Crossref] [PubMed]
  62. J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
    [Crossref] [PubMed]
  63. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
    [Crossref] [PubMed]
  64. M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
    [Crossref] [PubMed]
  65. M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
    [Crossref]
  66. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
    [Crossref] [PubMed]
  67. D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
    [Crossref] [PubMed]
  68. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
    [Crossref] [PubMed]
  69. P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
    [Crossref]
  70. R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
    [Crossref] [PubMed]
  71. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  72. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [Crossref]
  73. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [Crossref]
  74. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
    [Crossref]
  75. G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
    [Crossref]
  76. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [Crossref]
  77. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
    [Crossref]
  78. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
    [Crossref]
  79. Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
    [Crossref] [PubMed]
  80. M. Hall, J. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
    [Crossref] [PubMed]
  81. M. Hall, J. Altepeter, and P. Kumar, “All-optical switching of photonic entanglement,” New J. Phys. 13, 105004 (2011).
    [Crossref]
  82. T. M. Rambo, J. B. Altepeter, and P. Kumar, “Functional quantum computing: An optical approach,” Phys. Rev. A 93, 052321 (2016).
    [Crossref]
  83. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
    [Crossref] [PubMed]
  84. G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
    [Crossref]
  85. C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
    [Crossref]
  86. C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, “Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses,” Opt. Lett. 39, 3312–3315 (2014).
    [Crossref] [PubMed]
  87. C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
    [Crossref]
  88. M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
    [Crossref]
  89. T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
    [Crossref] [PubMed]
  90. T. Beth and M. Rötteler, “Quantum algorithms: Applicable algebra and quantum physics,” in Quantum Information, G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, eds. (Springer, 2001), pp. 96–150.
    [Crossref]
  91. Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
    [Crossref]

2018 (1)

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

2017 (1)

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

2016 (6)

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

Y. H. Kang, Y. Xia, and P. M. Lu, “Two-photon phase gate with linear optical elements and atom-cavity system,” Quantum Inf. Process. 15, 4521–4535 (2016).
[Crossref]

W. F. Balthazar, C. E. R. Souza, D. P. Caetano, E. F. Galvão, J. A. O. Huguenin, and A. Z. Khoury, “Tripartite nonseparability in classical optics,” Opt. Lett. 41, 5797–5800 (2016).
[Crossref] [PubMed]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

T. M. Rambo, J. B. Altepeter, and P. Kumar, “Functional quantum computing: An optical approach,” Phys. Rev. A 93, 052321 (2016).
[Crossref]

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

2015 (6)

Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
[Crossref]

D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40, 4887–4890 (2015).
[Crossref] [PubMed]

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,” Phys. Rev. A 91, 062303 (2015).
[Crossref]

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

2014 (7)

H. R. Wei and F. G Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[Crossref] [PubMed]

H. F. Wang, A. D. Zhu, and S. Zhang, “One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities,” Opt. Lett. 39, 1489–1492 (2014).
[Crossref] [PubMed]

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, “Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses,” Opt. Lett. 39, 3312–3315 (2014).
[Crossref] [PubMed]

2013 (7)

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

A. R. C. Pinheiro, C. E. R. Souza, D. P. Caetano, J. A. O. Huguenin, A. G. M. Schmidt, and A. Z. Khoury, “Vector vortex implementation of a quantum game,” J. Opt. Soc. Am. B 30, 3210–3214 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

2012 (3)

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

2011 (5)

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

M. Hall, J. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

M. Hall, J. Altepeter, and P. Kumar, “All-optical switching of photonic entanglement,” New J. Phys. 13, 105004 (2011).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

2010 (3)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[Crossref]

2009 (8)

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

B. Coutinho dos Santos, K. Dechoum, and A. Z. Khoury, , “Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum,” Phys. Rev. Lett. 103, 230503 (2009).
[Crossref]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

2008 (5)

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref] [PubMed]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305 (2008).
[Crossref]

2007 (1)

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
[Crossref]

2006 (4)

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

2005 (5)

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).

2004 (7)

M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
[Crossref]

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[Crossref] [PubMed]

2003 (4)

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003).
[Crossref] [PubMed]

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

2001 (4)

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

2000 (2)

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
[Crossref] [PubMed]

1999 (3)

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

R. Schack and C. M. Caves, “Classical model for bulk-ensemble NMR quantum computation,” Phys. Rev. A 60, 4354–4362 (1999).
[Crossref]

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

1998 (2)

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

1997 (3)

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy,” Proc. Natl. Acad. Sci. United States Am. 94, 1634–1639 (1997).
[Crossref]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[Crossref]

1995 (1)

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Abstreiter, G.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Agarwal, G. S.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,” Phys. Rev. A 91, 062303 (2015).
[Crossref]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Alfano, R.

Altepeter, J.

M. Hall, J. Altepeter, and P. Kumar, “All-optical switching of photonic entanglement,” New J. Phys. 13, 105004 (2011).
[Crossref]

M. Hall, J. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

Altepeter, J. B.

T. M. Rambo, J. B. Altepeter, and P. Kumar, “Functional quantum computing: An optical approach,” Phys. Rev. A 93, 052321 (2016).
[Crossref]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Aolita, L.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Atatüre, M.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
[Crossref]

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

Awschalom, D. D.

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Badolato, A.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
[Crossref]

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Bai, C. H.

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

Balthazar, W. F.

Barbieri, M.

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).

M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
[Crossref]

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Bayer, M.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Berezovsky, J.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Bernien, H.

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Bester, G.

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

Beth, T.

T. Beth and M. Rötteler, “Quantum algorithms: Applicable algebra and quantum physics,” in Quantum Information, G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, eds. (Springer, 2001), pp. 96–150.
[Crossref]

Bhatti, D.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,” Phys. Rev. A 91, 062303 (2015).
[Crossref]

Bichler, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Blok, M. S.

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Bonato, C.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Borregaard, J.

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Bouwmeester, D.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Briegel, H. J.

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Bužek, V.

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Caetano, D. P.

Cai, C. X.

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

Castagnoli, G.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
[Crossref] [PubMed]

Caves, C. M.

R. Schack and C. M. Caves, “Classical model for bulk-ensemble NMR quantum computation,” Phys. Rev. A 60, 4354–4362 (1999).
[Crossref]

Ceccarelli, R.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

Chang, D. E.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Chen, P. C.

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

Chiuri, A.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

Chuang, I. L.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
[Crossref]

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

Cinelli, C.

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).

M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
[Crossref]

Cirac, J. I.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Coldren, L. A.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Cory, D. G.

D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy,” Proc. Natl. Acad. Sci. United States Am. 94, 1634–1639 (1997).
[Crossref]

Côté, R.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Coutinho dos Santos, B.

B. Coutinho dos Santos, K. Dechoum, and A. Z. Khoury, , “Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum,” Phys. Rev. Lett. 103, 230503 (2009).
[Crossref]

Cramer, J.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

Cui, W. X.

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

De Greve, K.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

De Martini, F.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).

M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
[Crossref]

Dechoum, K.

B. Coutinho dos Santos, K. Dechoum, and A. Z. Khoury, , “Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum,” Phys. Rev. Lett. 103, 230503 (2009).
[Crossref]

Deng, F. G

Deng, F. G.

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

Ding, D.

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Dobrovitski, V. V.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Dreiser, J.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
[Crossref]

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

Ducommun, Y.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Efros, A. L.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Ekert, A.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
[Crossref] [PubMed]

Elzerman, J. M.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

Eto, Y.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Fahmy, A. F.

D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy,” Proc. Natl. Acad. Sci. United States Am. 94, 1634–1639 (1997).
[Crossref]

Feng, G. R.

Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
[Crossref]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

Feng, M.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Finley, J. J.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Forchel, A.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Galvão, E. F.

Gammon, D.

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Gao, J. R.

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

Gao, T.

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).

Gardiner, C. W.

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Gasparoni, S.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Gershenfeld, N.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
[Crossref]

Gershenfeld, N. A.

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Gong, Y. X.

Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305 (2008).
[Crossref]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Greilich, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[Crossref]

Gudat, J.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Guo, G. C.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305 (2008).
[Crossref]

Guo, J.

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

Guo, S. F.

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

Gupta, J. A.

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Hall, M.

M. Hall, J. Altepeter, and P. Kumar, “All-optical switching of photonic entanglement,” New J. Phys. 13, 105004 (2011).
[Crossref]

M. Hall, J. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Hanson, R.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

Havel, T. F.

D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy,” Proc. Natl. Acad. Sci. United States Am. 94, 1634–1639 (1997).
[Crossref]

He, Y. Q.

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).

Heiss, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Höfling, S.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Högele, A.

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

Högerle, C.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Hu, C. Y.

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Hu, E.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Hu, S.

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

Huguenin, J. A. O.

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Imamoglu, A.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
[Crossref]

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Isenhower, L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jaksch, D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Jiang, X. X.

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

Jiao, R. Z.

Jin, G. S.

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jones, J. A.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
[Crossref] [PubMed]

Kamp, M.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Kang, Y. H.

Y. H. Kang, Y. Xia, and P. M. Lu, “Two-photon phase gate with linear optical elements and atom-cavity system,” Quantum Inf. Process. 15, 4521–4535 (2016).
[Crossref]

Karimi, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Karrai, K.

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

Katzer, D. S.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Kessler, E. M.

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Khoury, A. Z.

Kim, H.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Knobel, R.

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Kómár, P.

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Koppens, F. H. L.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

Kouwenhoven, L. P.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

Kozuma, M.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Kroutvar, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Kubinec, M. G.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
[Crossref]

Kumar, P.

T. M. Rambo, J. B. Altepeter, and P. Kumar, “Functional quantum computing: An optical approach,” Phys. Rev. A 93, 052321 (2016).
[Crossref]

M. Hall, J. Altepeter, and P. Kumar, “All-optical switching of photonic entanglement,” New J. Phys. 13, 105004 (2011).
[Crossref]

M. Hall, J. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

Kwek, L. C.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Leach, J.

Leung, D. W.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
[Crossref]

Li, T.

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

Li, X. Q.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Li, Y.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Li, Y. S.

Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
[Crossref]

Lidar, D. A.

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Lin, G. W.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

Lin, X. M.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

Liu, K.

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

Long, G. L.

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
[Crossref]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
[Crossref]

Long, Y.

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Lu, P. M.

Y. H. Kang, Y. Xia, and P. M. Lu, “Two-photon phase gate with linear optical elements and atom-cavity system,” Quantum Inf. Process. 15, 4521–4535 (2016).
[Crossref]

Lu, Y.

Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
[Crossref]

Lukin, M. D.

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Marrucci, L.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Mataloni, P.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
[Crossref]

McMahon, P. L.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Mikkelsen, M. H.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Milione, G.

Miranowicz, A.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Mølmer, K.

A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003).
[Crossref] [PubMed]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Naber, W. J. M.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

Nagali, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Nair, S.

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

Nemoto, K.

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nguyen, T. A.

Nielsen, M. A.

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[Crossref] [PubMed]

Noguchi, A.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Nolan, D. A.

Nori, F.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[Crossref]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Oulton, R.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Pan, J. W.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Park, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Piccirillo, B.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Piermarocchi, C.

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Pinheiro, A. R. C.

Press, D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref] [PubMed]

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Qin, W.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

Ralph, T. C.

Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305 (2008).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Rambo, T. M.

T. M. Rambo, J. B. Altepeter, and P. Kumar, “Functional quantum computing: An optical approach,” Phys. Rev. A 93, 052321 (2016).
[Crossref]

Rarity, J. G.

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Ren, B. C.

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

Reuter, D.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Rolston, S. L.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Rossi, A.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

Rötteler, M.

T. Beth and M. Rötteler, “Quantum algorithms: Applicable algebra and quantum physics,” in Quantum Information, G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, eds. (Springer, 2001), pp. 96–150.
[Crossref]

Rudolph, T.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Saffman, M.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Samarth, N.

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

Santamato, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Šašura, M.

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Schack, R.

R. Schack and C. M. Caves, “Classical model for bulk-ensemble NMR quantum computation,” Phys. Rev. A 60, 4354–4362 (1999).
[Crossref]

Schmidt, A. G. M.

Schneider, C.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Schuh, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

Sciarrino, F.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Shabaev, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Sham, L. J.

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Shor, P. W.

P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, S. Goldwasser, ed. (IEEE Computer Society Press, 1994), pp. 124–134.

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Smolin, J. A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Song, H. S.

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
[Crossref]

Song, J.

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
[Crossref]

Sørensen, A. S.

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003).
[Crossref] [PubMed]

Souza, C. E. R.

Stavarache, V.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Steel, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Steel, D. G.

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

Stievater, T. H.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Stoltz, N. G.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

Su, Q. P.

Taminiau, T. H.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Tang, Y. C.

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

Tao, P.

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Thon, S.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Toyli, D. M.

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Ueda, M.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Vallone, G.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

van der Sar, T.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

van Exter, M. P.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

van Nieuwenburg, E.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Vandersypen, L. M. K.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

Vedral, V.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
[Crossref] [PubMed]

Vink, I. T.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

von Zanthier, J.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,” Phys. Rev. A 91, 062303 (2015).
[Crossref]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Walther, P.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Wang, C.

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

Wang, D. Y.

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

Wang, G. Y.

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

Wang, H. F.

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

H. F. Wang, A. D. Zhu, and S. Zhang, “One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities,” Opt. Lett. 39, 1489–1492 (2014).
[Crossref] [PubMed]

Wang, T. J.

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

Wang, X.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Wang, Z. H.

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Wei, H. R.

H. R. Wei and F. G Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

White, A. G.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Wieck, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Willems van Beveren, L. H.

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

Witkamp, B.

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

Wu, Y. W.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Xia, Y.

Y. H. Kang, Y. Xia, and P. M. Lu, “Two-photon phase gate with linear optical elements and atom-cavity system,” Quantum Inf. Process. 15, 4521–4535 (2016).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
[Crossref]

Xu, G. F.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Yacoby, A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

Yakovlev, D. R.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Yamamoto, Y.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref] [PubMed]

Yan, F. L.

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).

Yang, C. P.

C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, “Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses,” Opt. Lett. 39, 3312–3315 (2014).
[Crossref] [PubMed]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[Crossref]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Yugova, I. A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

Zeilinger, A.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Zhang, B. Y.

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref] [PubMed]

Zhang, F. Y.

Zhang, P.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Zhang, S.

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Zhang, Y.

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

Zheng, S. B.

C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, “Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses,” Opt. Lett. 39, 3312–3315 (2014).
[Crossref] [PubMed]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[Crossref]

Zhong, Z.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Zhu, A. D.

Zoller, P.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Zou, X. B.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

Zunger, A.

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

Acta Phys. Sin. (2)

D. Ding, Y. Q. He, F. L. Yan, and T. Gao, “Generation of six-photon hyperentangled states,” Acta Phys. Sin. 64, 160301 (2015).

Y. Q. He, D. Ding, P. Tao, F. L. Yan, and T. Gao, “Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term,” Acta Phys. Sin. 67, 060302 (2018).

Appl. Phys. Lett. (2)

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Europhys. Lett. (1)

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
[Crossref]

Fortschritte der Physik (1)

M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, “Generation of (2 2) and (4 4) two-photon states with tunable degree of entanglement and mixedness,” Fortschritte der Physik 52, 1102–1109 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

C. Cinelli, M. Barbieri, F. De Martini, and P. Mataloni, “Realization of hyperentangled two-photon states,” Laser Phys. 15, 124–128 (2005).

Laser Phys. Lett. (2)

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

Nat. Nanotechnol. (1)

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. Nanotechnol. 9, 171–176 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[Crossref]

Nat. Phys. (1)

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of faraday rotation from a single confined spin,” Nat. Phys. 3, 101–106 (2007).
[Crossref]

Nature (7)

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–435 (2004).
[Crossref] [PubMed]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref] [PubMed]

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[Crossref] [PubMed]

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature 403, 869–871 (2000).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

New J. Phys. (1)

M. Hall, J. Altepeter, and P. Kumar, “All-optical switching of photonic entanglement,” New J. Phys. 13, 105004 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (19)

T. M. Rambo, J. B. Altepeter, and P. Kumar, “Functional quantum computing: An optical approach,” Phys. Rev. A 93, 052321 (2016).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: Realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
[Crossref]

Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305 (2008).
[Crossref]

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

R. Schack and C. M. Caves, “Classical model for bulk-ensemble NMR quantum computation,” Phys. Rev. A 60, 4354–4362 (1999).
[Crossref]

Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, “NMR realization of adiabatic quantum algorithms for the modified simon problem,” Phys. Rev. A 88, 012306 (2013).
[Crossref]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,” Phys. Rev. A 91, 062303 (2015).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Phys. Rev. B (7)

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[Crossref]

G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[Crossref]

P. C. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Phys. Rev. Lett. (21)

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

M. Hall, J. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
[Crossref] [PubMed]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

B. Coutinho dos Santos, K. Dechoum, and A. Z. Khoury, , “Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum,” Phys. Rev. Lett. 103, 230503 (2009).
[Crossref]

K. Liu, J. Guo, C. X. Cai, S. F. Guo, and J. R. Gao, “Experimental Generation of Continuous-Variable Hyperentan-glement in an Optical Parametric Oscillator,” Phys. Rev. Lett. 113, 170501 (2014).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003).
[Crossref] [PubMed]

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[Crossref] [PubMed]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[Crossref]

Proc. Natl. Acad. Sci. United States Am. (1)

D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy,” Proc. Natl. Acad. Sci. United States Am. 94, 1634–1639 (1997).
[Crossref]

Proceeding Royal Soc. A (1)

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proceeding Royal Soc. A 454, 447–467 (1998).
[Crossref]

Quantum Inf. Process. (2)

Y. H. Kang, Y. Xia, and P. M. Lu, “Two-photon phase gate with linear optical elements and atom-cavity system,” Quantum Inf. Process. 15, 4521–4535 (2016).
[Crossref]

C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F. Wang, “Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system,” Quantum Inf. Process. 15, 1485–1498 (2016).
[Crossref]

Sci. Bull. (1)

Y. Lu, G. R. Feng, Y. S. Li, and G. L. Long, “Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system,” Sci. Bull. 60, 241–248 (2015).
[Crossref]

Sci. Reports (1)

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

Science (7)

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[Crossref] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[Crossref] [PubMed]

M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science 312, 551–553 (2006).
[Crossref] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[Crossref] [PubMed]

J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[Crossref] [PubMed]

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

Other (3)

P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, S. Goldwasser, ed. (IEEE Computer Society Press, 1994), pp. 124–134.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

T. Beth and M. Rötteler, “Quantum algorithms: Applicable algebra and quantum physics,” in Quantum Information, G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, eds. (Springer, 2001), pp. 96–150.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagrams for a singly charged QD in a double-sided microcavity, the relevant energy levels, and the optical transitions. Z represents the quantization axis (microcavity Z axis). |R〉 (|R〉) and |L〉 (|L〉) represent the right-circularly polarized photon the left-circularly polarized photon and propagating along (against) the normal direction of the microcavity Z axis, respectively.
Fig. 2
Fig. 2 Schematic diagram for hyperparallel photonic quantum CNOT gate with a self-error-corrected pattern. CPBS i (i = 1 ∼ 6) is a circularly polarizing beam splitter which transmits the photon in the right-circular polarization (R〉 and reflects the photon in the left-circular polarization |L〉, respectively. BS i (i = 1, 2) is a 50 : 50 beam splitter which performs the spatial-mode Hadamard operation [ | b 1 1 2 ( | c 1 + | c 2 ) , | b 2 1 2 ( | c 1 | c 2 ) ] on the photon. H pi (i = 1 ∼ 4) is a half-wave plate which performs the polarization Hadamard operation [ | R 1 2 ( | R + | L ) , | L 1 2 ( | R | L ) ] on the photon. X i (i = 1 ∼ 3) is a half-wave plate which performs a bit-flip operation [|R〉 → |L〉, |L〉 → |R 〉] on the photon. T i (i = 1 ~ 3) is a partially transmitted mirror with the transmission coefficient T. SW is an optical switch which couples different photons into and out of the circuit of the photonic quantum gate sequentially and couples different spatial modes of a photon into and out of the basic block sequentially. B i (i = 1, 2) represents the basic block consisting of the QD i (i = 1, 2)-microcavity and the schematic diagram for the basic block is shown in the inset, in which C is an optical circulator which can route the photon into an appropriate path. BS is a 50: 50 beam splitter. Hpi(i = 5, 6) is a half-wave plate and completes the polarization Hadamard operation. Ri (i = 1, 2) is a fully reflective mirror. D is a single-photon detector.
Fig. 3
Fig. 3 The efficiency of our hyperparallel photonic quantum CNOT gate. ω = ω c = ω X and γ/κ = 0.1, which are experimentally achievable, are taken here.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d a ^ d t = [ i ( ω c ω ) + κ + κ s 2 ] a ^ g σ ^ κ ( a ^ i n + a ^ i n ) + H ^ , σ ^ d t = [ i ( ω X ω ) + γ 2 ] σ ^ g σ ^ z a ^ + G ^ , a ^ r = a ^ i n + κ a ^ , a ^ t = a ^ i n + κ a ^ .
r = 1 + t , t = κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 .
r 0 = 1 + t 0 , t 0 = κ i ( ω c ω ) + κ + κ s 2 .
| R r | R + t | R , | L r | R + t | L , | R t 0 | R + r 0 | L , | L t 0 | L + r 0 | R , | R r | L + t | R , | L r | R + t | L , | R t 0 | R + r 0 | L , | L t 0 | L + r 0 | R .
| Φ 1 = D | R | i 1 | φ + + T | L | i 2 | φ .
| Φ 2 = D | R | i 1 | φ + T | L | i 2 | φ + .
| Ψ 1 = T ( β 1 | a 1 + β 2 | a 2 ) ( α 1 | R a | φ + 1 + α 2 | L a | φ 1 ) | ϕ b | φ + 2 .
| Ψ 2 = T 2 ( α 1 | R a | 1 + α 2 | L a | 1 ) ( β 1 | a 1 | 2 + β 2 | a 2 | 2 ) | ϕ b .
| Ψ 3 = T 2 ( α 1 | R a | 1 + α 2 | L a | 1 ) ( β 1 | a 1 | 2 + β 2 | a 2 | 2 ) [ ( γ 1 | R + γ 2 | L ) b ( δ 1 | b 1 + δ 2 | b 2 ) ] .
| Ψ 4 = T 4 2 [ α 1 | R a ( γ 1 | R + γ 2 | L ) b + α 2 | L a ( γ 2 | R + γ 1 | L ) b ] [ β 1 | a 1 ( δ 1 | b 1 + δ 2 | b 2 ) + β 2 | a 2 ( δ 2 | b 1 + δ 1 | b 2 ) ] | 12 + T 4 2 [ α 1 | R a ( γ 1 | R + γ 2 | L ) b α 2 | L a ( γ 2 | R + γ 1 | L ) b ] [ β 1 | a 1 ( δ 1 | b 1 + δ 2 | b 2 ) + β 2 | a 2 ( δ 2 | b 1 + δ 1 | b 2 ) ] | 12 + T 4 2 [ α 1 | R a ( γ 1 | R + γ 2 | L ) b + α 2 | L a ( γ 2 | R + γ 1 | L ) b ] [ β 1 | a 1 ( δ 1 | b 1 + δ 2 | b 2 ) β 2 | a 2 ( δ 2 | b 1 + δ 1 | b 2 ) ] | 12 + T 4 2 [ α 1 | R a ( γ 1 | R + γ 2 | L ) b α 2 | L a ( γ 2 | R + γ 1 | L ) b ] [ β 1 | a 1 ( δ 1 | b 1 + δ 2 | b 2 ) β 2 | a 2 ( δ 2 | b 1 + δ 1 | b 2 ) ] | 12 .
| Ψ p = [ α 1 | R a ( γ 1 | R + γ 2 | L ) b + α 2 | L a ( γ 2 | R + γ 1 | L ) b ] [ β 1 | a 1 ( δ 1 | b 1 + δ 2 | b 2 ) + β 2 | a 2 ( δ 2 | b 1 + δ 1 | b 2 ) ] .
| Ψ N 1 = T 2 ( α 1 | R a | 1 + α 2 | L a | 1 ) ( β 1 | a 1 | 2 + β 2 | a 2 | 2 ) | ϕ b 1 | ϕ b 2 | ϕ b N .
| Ψ N 2 = T 4 [ α 1 | R a | 1 ( γ 1 1 | R + γ 2 1 | L ) b 1 + α 2 | L a | 1 ( γ 2 1 | R + γ 1 1 | L ) b 1 ] [ β 1 | a 1 | 2 ( δ 1 1 | b 1 + δ 2 1 | b 2 ) b 1 + β 2 | a 2 | 2 ( δ 2 1 | b 1 + δ 1 1 | b 2 ) b 1 ] | ϕ b 2 | ϕ b N .
| Ψ N 3 = T 2 ( N + 1 ) [ α 1 | R a | 1 ( γ 1 1 | R + γ 2 1 | L ) b 1 ( γ 1 2 | R + γ 2 2 | L ) b 2 ( γ 1 N | R + γ 2 N | L ) b N + α 2 | L a | 1 ( γ 2 1 | R + γ 1 1 | L ) b 1 ( γ 2 2 | R + γ 1 2 | L ) b 2 ( γ 2 N | R + γ 1 N | L ) b N ] [ β 1 | a 1 | 2 ( δ 1 1 | b 1 + δ 2 1 | b 2 ) b 1 ( δ 1 2 | b 1 + δ 2 2 | b 2 ) b 2 ( δ 1 N | b 1 + δ 2 N | b 2 ) b N + β 2 | a 2 | 2 ( δ 2 1 | b 1 + δ 1 1 | b 2 ) b 1 ( δ 2 2 | b 1 + δ 1 2 | b 2 ) b 2 ( δ 2 N | b 1 + δ 1 N | b 2 ) b N ] .
| Ψ N p = [ α 1 | R a ( γ 1 1 | R + γ 2 1 | L ) b 1 ( γ 1 2 | R + γ 2 2 | L ) b 2 ( γ 1 N | R + γ 2 N | L ) b N + α 2 | L a ( γ 2 1 | R + γ 1 1 | L ) b 1 ( γ 2 2 | R + γ 1 2 | L ) b 2 ( γ 2 N | R + γ 1 N | L ) b N ] [ β 1 | a 1 ( δ 1 1 | b 1 + δ 2 1 | b 2 ) b 1 ( δ 1 2 | b 1 + δ 2 2 | b 2 ) b 2 ( δ 1 N | b 1 + δ 2 N | b 2 ) b N + β 2 | a 2 ( δ 2 1 | b 1 + δ 1 1 | b 2 ) b 1 ( δ 2 2 | b 1 + δ 1 2 | b 2 ) b 2 ( δ 2 N | b 1 + δ 1 N | b 2 ) b N ] .
η = | T | 8 ,

Metrics