Abstract

Conventional optical components have been proposed to realize high-quality line focusing with uniform intensity distribution such as cylindrical lenses, segmented wedge-arrays, or a combination of prisms and spherical mirrors. Numerous factors such as the manufacturing tolerances or the need for precise alignment of conventional lenses cause wave front aberrations that impact the performance of optical systems. These aforementioned limitations affect the uniformity of the intensity distribution and the intercept factor of lenses. Here, we experimentally demonstrate an integrable planar dielectric cylindrical lens made of titanium dioxide for uniform line focusing and discuss the sensitivity of its performance to fabrication imperfections originating from non-ideal geometrical parameters. The lens has a numerical aperture of 0.247, an intercept factor of 0.85, and an efficiency of 79% at 800 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in planar optics: from plasmonic to dielectric metasurfaces

Patrice Genevet, Federico Capasso, Francesco Aieta, Mohammadreza Khorasaninejad, and Robert Devlin
Optica 4(1) 139-152 (2017)

Analysis of the focusing crosstalk effects of broadband all-dielectric planar metasurface microlens arrays for ultra-compact optical device applications

Aytekin Özdemir, Nazmi Yılmaz, Shadi A. Alboon, Yuzuru Takashima, and Hamza Kurt
OSA Continuum 1(2) 506-520 (2018)

Economic fabrication of a novel hybrid planar Grating/Fresnel lens for miniature spectrometers

Qian Zhou, Xinghui Li, Menglin Geng, Haifei Hu, Kai Ni, Lunchao Zhong, Peng Yan, and Xiaohao Wang
Opt. Express 26(5) 6079-6089 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).
  2. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt. 32(14), 2543–2554 (1993).
    [Crossref] [PubMed]
  3. B. Lü, B. Zhang, and B. Cai, “Focusing of a Gaussian Schell-model beam through a circular lens,” J. Mod. Opt. 42(2), 289–298 (1995).
    [Crossref]
  4. H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
    [Crossref]
  5. K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
    [Crossref] [PubMed]
  6. Y. Higuchi and J. Hanari, “Fingerprint image input apparatus including a cylindrical lens,” US Patents. 5, (1992).
  7. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  8. B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80(20), 205120 (2009).
    [Crossref]
  9. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
  10. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  11. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  12. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  13. R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
    [Crossref] [PubMed]
  14. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 3(3), 1600295 (2017).
    [Crossref]
  15. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  16. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  17. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
    [Crossref] [PubMed]
  18. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref] [PubMed]
  19. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
    [Crossref] [PubMed]
  20. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).
  21. L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
    [Crossref]
  22. L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
    [Crossref] [PubMed]
  23. L. Hsu, M. Dupré, A. Ndao, and B. Kanté, “From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit,” Opt. Lett. 42(8), 1520–1523 (2017).
    [Crossref] [PubMed]
  24. C. Simovski, D. Morits, P. Voroshilov, M. Guzhva, P. Belov, and Y. Kivshar, “Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells,” Opt. Express 21(S4Suppl 4), A714–A725 (2013).
    [Crossref] [PubMed]
  25. A. Ndao, R. Salut, M. Suarez, and F. I. Baida, “Plasmonless polarization-selective metasurfaces in the visible range,” J. Opt. 20(4), 045003 (2018).
    [Crossref]
  26. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  27. R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
    [Crossref] [PubMed]
  28. J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
    [Crossref] [PubMed]
  29. Ashok Kodigala, Thomas Lepetit, and Boubacar Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” Phys. Rev. B 94, 201103 (2016).
  30. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
    [Crossref]
  31. D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
    [Crossref] [PubMed]
  32. S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
    [Crossref] [PubMed]
  33. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
    [Crossref] [PubMed]
  34. J. Cheng, S. Jafar-Zanjani, and H. Mosallaei, “All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength,” Sci. Rep. 6(1), 38440 (2016).
    [Crossref] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  36. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
    [Crossref] [PubMed]

2018 (4)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

A. Ndao, R. Salut, M. Suarez, and F. I. Baida, “Plasmonless polarization-selective metasurfaces in the visible range,” J. Opt. 20(4), 045003 (2018).
[Crossref]

2017 (6)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 3(3), 1600295 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[Crossref] [PubMed]

L. Hsu, M. Dupré, A. Ndao, and B. Kanté, “From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit,” Opt. Lett. 42(8), 1520–1523 (2017).
[Crossref] [PubMed]

J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
[Crossref] [PubMed]

L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
[Crossref] [PubMed]

2016 (6)

Ashok Kodigala, Thomas Lepetit, and Boubacar Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” Phys. Rev. B 94, 201103 (2016).

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
[Crossref] [PubMed]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

J. Cheng, S. Jafar-Zanjani, and H. Mosallaei, “All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength,” Sci. Rep. 6(1), 38440 (2016).
[Crossref] [PubMed]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

2015 (6)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

2014 (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

2009 (1)

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

2004 (1)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

2000 (1)

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

1995 (1)

B. Lü, B. Zhang, and B. Cai, “Focusing of a Gaussian Schell-model beam through a circular lens,” J. Mod. Opt. 42(2), 289–298 (1995).
[Crossref]

1993 (1)

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Arbabi, A.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arbabi, E.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Ardron, M.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
[Crossref] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Baida, F. I.

A. Ndao, R. Salut, M. Suarez, and F. I. Baida, “Plasmonless polarization-selective metasurfaces in the visible range,” J. Opt. 20(4), 045003 (2018).
[Crossref]

Bakker, R. M.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Belov, P.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[Crossref] [PubMed]

C. Simovski, D. Morits, P. Voroshilov, M. Guzhva, P. Belov, and Y. Kivshar, “Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells,” Opt. Express 21(S4Suppl 4), A714–A725 (2013).
[Crossref] [PubMed]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

Cai, B.

B. Lü, B. Zhang, and B. Cai, “Focusing of a Gaussian Schell-model beam through a circular lens,” J. Mod. Opt. 42(2), 289–298 (1995).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 3(3), 1600295 (2017).
[Crossref]

Chen, B.

W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).

Chen, B. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, M. K.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, W.

W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

Chen, X.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
[Crossref] [PubMed]

Chen, Y. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Cheng, J.

J. Cheng, S. Jafar-Zanjani, and H. Mosallaei, “All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength,” Sci. Rep. 6(1), 38440 (2016).
[Crossref] [PubMed]

Chiu, L. D.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Choi, S.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

de Lustrac, A.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Devlin, R. C.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

Dixit, S. N.

Dupré, M.

Dürr, P.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Faraon, A.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fu, Y. H.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Fujita, K.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Guzhva, M.

Haase, T.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Hanari, J.

Y. Higuchi and J. Hanari, “Fingerprint image input apparatus including a cylindrical lens,” US Patents. 5, (1992).

Hashimoto, H.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Henesian, M. A.

Higuchi, Y.

Y. Higuchi and J. Hanari, “Fingerprint image input apparatus including a cylindrical lens,” US Patents. 5, (1992).

Horie, Y.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hsu, L.

Hsu, L. Y.

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Huang, T. T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Jafar-Zanjani, S.

J. Cheng, S. Jafar-Zanjani, and H. Mosallaei, “All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength,” Sci. Rep. 6(1), 38440 (2016).
[Crossref] [PubMed]

Kamali, S. M.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Kanté, B.

Kanté, Boubacar

Ashok Kodigala, Thomas Lepetit, and Boubacar Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” Phys. Rev. B 94, 201103 (2016).

Kasai, A.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Kawata, S.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Khaidarov, E.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kivshar, Y.

Kodigala, A.

Kodigala, Ashok

Ashok Kodigala, Thomas Lepetit, and Boubacar Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” Phys. Rev. B 94, 201103 (2016).

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

Krivitsky, L. A.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Kück, H.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Kunze, D.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Kuznetsov, A. I.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Lakner, H.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 3(3), 1600295 (2017).
[Crossref]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Leong, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Lepetit, T.

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Lepetit, Thomas

Ashok Kodigala, Thomas Lepetit, and Boubacar Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” Phys. Rev. B 94, 201103 (2016).

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Liang, X.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Lin, R. M.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lourtioz, J. M.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Lü, B.

B. Lü, B. Zhang, and B. Cai, “Focusing of a Gaussian Schell-model beam through a circular lens,” J. Mod. Opt. 42(2), 289–298 (1995).
[Crossref]

Mao, C.

W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Menon, R.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Mohammad, N.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

Morgan, A. J.

Morits, D.

Mosallaei, H.

J. Cheng, S. Jafar-Zanjani, and H. Mosallaei, “All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength,” Sci. Rep. 6(1), 38440 (2016).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

Ndao, A.

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

Nielsen, M. G.

Oh, J.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

Palonpon, A. F.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Park, J.-H.

Pors, A.

Powell, H. T.

Salut, R.

A. Ndao, R. Salut, M. Suarez, and F. I. Baida, “Plasmonless polarization-selective metasurfaces in the visible range,” J. Opt. 20(4), 045003 (2018).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Schenk, H.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Schmidt, R.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[Crossref] [PubMed]

Select, J.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Simovski, C.

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Slobozhanyuk, A.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[Crossref] [PubMed]

Smith, N. I.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Sobe, U.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Suarez, M.

A. Ndao, R. Salut, M. Suarez, and F. I. Baida, “Plasmonless polarization-selective metasurfaces in the visible range,” J. Opt. 20(4), 045003 (2018).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Taubner, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Thomas, I. M.

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

Valuckas, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Voroshilov, P.

Wang, J. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wang, P.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

Wang, Z.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Watanabe, K.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Webb, A.

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[Crossref] [PubMed]

Wegner, P. J.

Wen, D.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
[Crossref] [PubMed]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

Woods, B. W.

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wuttig, M.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Xu, A.

W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

Yellowhair, J.

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Yu, Y. F.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Yue, F.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
[Crossref] [PubMed]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Zhang, B.

B. Lü, B. Zhang, and B. Cai, “Focusing of a Gaussian Schell-model beam through a circular lens,” J. Mod. Opt. 42(2), 289–298 (1995).
[Crossref]

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

J. Mod. Opt. (1)

B. Lü, B. Zhang, and B. Cai, “Focusing of a Gaussian Schell-model beam through a circular lens,” J. Mod. Opt. 42(2), 289–298 (1995).
[Crossref]

J. Opt. (1)

A. Ndao, R. Salut, M. Suarez, and F. I. Baida, “Plasmonless polarization-selective metasurfaces in the visible range,” J. Opt. 20(4), 045003 (2018).
[Crossref]

Laser Photonics Rev. (1)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 3(3), 1600295 (2017).
[Crossref]

Nano Lett. (3)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflect array for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394 (2014).
[Crossref] [PubMed]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A Metalens with a Near-Unity Numerical Aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6(1), 10095 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).

Nat. Nanotechnol. (3)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

Ashok Kodigala, Thomas Lepetit, and Boubacar Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” Phys. Rev. B 94, 201103 (2016).

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Phys. Rev. Lett. (1)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

L. Y. Hsu, T. Lepetit, and B. Kanté, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Sci. Appl. (1)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Sci. Appl. 6(7), el17016 (2017).
[Crossref]

Sci. Rep. (4)

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6(1), 27628 (2016).
[Crossref] [PubMed]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

J. Cheng, S. Jafar-Zanjani, and H. Mosallaei, “All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength,” Sci. Rep. 6(1), 38440 (2016).
[Crossref] [PubMed]

R. Schmidt, A. Slobozhanyuk, P. Belov, and A. Webb, “Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging,” Sci. Rep. 7(1), 1678 (2017).
[Crossref] [PubMed]

Science (3)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310 (2015).

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Top. Quantum Electron. (1)

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, H. Kück, and J. Select, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Top. Quantum Electron. 6(5), 715–722 (2000).
[Crossref]

Other (3)

Y. Higuchi and J. Hanari, “Fingerprint image input apparatus including a cylindrical lens,” US Patents. 5, (1992).

W. Chen, S. Wang, C. Mao, B. Chen, and A. Xu, “Cylinder lens array line focus system for x-ray laser experiments,” in Conference on Lasers and Electro-Optics (1990).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Phase shift for different radii and schematic of the unit cylindrical elements. P (period), h (thickness of the resonator), R (radius), hs (thickness of the spacer), hg (thickness of the ground plane). Materials: TiO2 (brown), SiO2 (blue), Ag (grey). (b) Phase distribution of a planar cylindrical lens under normal incidence with a 40 µm focal length and a 200 µm by 200 µm aperture size (blue). Required radius (green).
Fig. 2
Fig. 2 Fabrication process: (a) metal deposition, (b) SiO2 deposition using PECVD, (c) E-beam lithography (d) Thin layer TiO2 deposition using ALD, (e) TiO2 RIE process to expose the underlying PMMA pattern, (f) removal of the PMMA. (g) Top view SEM images of metasurfaces and zoom-in containing 6 x 5 cylindrical structures imaged in the xy plane and clearly evidencing the gradient in structures size. (h) Atomic Force Microscope (AFM) measurements of the shape at the top a cylinder.
Fig. 3
Fig. 3 (a) Phase distribution for a periodic structure for as a function of the radius (R) and the curvature (δ). (b) The phase profile of (a) at δ = 0 (nm) and δ = 25(nm). (c) The phase variation due to the curvature (δ) with different radius (R). (d) The phase variation with different δ at R = 150 nm. (e) Average intercept factor as function of fabrication imperfections (|ΔR|) and curvature (δ). (f) Average intercept factor as function of fabrication imperfection (|ΔR|) at δ = 0 nm and δ = 25 nm.
Fig. 4
Fig. 4 Total electric field (x-polarization) for different radii without fabrication imperfections (δ = 0 nm): (a) Radius R = 90 nm, (b) R = 160 nm, (c) R = 200 nm. Total electric field distribution for different radii with fabrication imperfections (δ = 25 nm): (d) Radius R = 90 nm, (e) R = 160 nm, (f) R = 200 nm.
Fig. 5
Fig. 5 (a), (b), and (c) present numerical simulations of the normalized electric field (x-y plane) for x, y polarizations and normalized electric field in x-z plane respectively. (d) and (e) present the experimental normalized electric field intensity at the focus in the xy plane for x and y polarizations. (f) compares the normalized intensity profile along x in numerical simulation and in experiment.

Metrics