Abstract

Single layer self-assembled InGaAs quantum dots (QDs) are manipulated by using different arsenic species on GaAs (100) surface. The As4 molecules are experimentally observed to be more promising than As2 to promote the formation of one-dimensionally-aligned QD-chain arrays. The lateral alignment of QDs and the corresponding formation of dot chains are explained by the anisotropic surface kinetics in combination with the different reactivities of the two molecules with bonding sites on the GaAs (100) surface. Photoluminescence (PL) measurements demonstrate that the spectra of the QD-chains broaden to higher energy and increases in intensity with increasing excitation laser power. The PL band of the QD-chains also exhibits a 9 meV reduction in linewidth as temperature increases starting from 8 K. These observations confirm an efficient lateral coupling between neighboring QDs and thereafter polarized QD emission, whereas the randomly distributed QDs grown with As2 show no preferential polarization. Such QD-chains exhibiting anisotropic properties have the potential for nanophotonics applications like electro-optic modulators with very low drive voltage and ultra-wide bandwidth operation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of Bi on morphology and optical properties of InAs QDs

Lijuan Wang, Wenwu Pan, Xiren Chen, Xiaoyan Wu, Jun Shao, and Shumin Wang
Opt. Mater. Express 7(12) 4249-4257 (2017)

Bimodal-sized quantum dots for broad spectral bandwidth emitter

Yinli Zhou, Jian Zhang, Yongqiang Ning, Yugang Zeng, Jianwei Zhang, Xing Zhang, Li Qin, and Lijun Wang
Opt. Express 23(25) 32230-32237 (2015)

Spatially localized band-gap renormalization and band-filling effects in three growth-interrupted multiple asymmetric coupled narrow quantum wells

A. G. Cui, Y. J. Ding, S. J. Lee, J. V. D. Veliadis, J. B. Khurgin, S. Li, D. C. Reynolds, and J. Grata
J. Opt. Soc. Am. B 13(3) 536-545 (1996)

References

  • View by:
  • |
  • |
  • |

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, (Wiley: New York, 1998).
  2. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
    [Crossref] [PubMed]
  3. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
    [Crossref] [PubMed]
  4. H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  5. Z. Mi and P. Bhattacharya, “Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers,” J. Appl. Phys. 98(2), 023510 (2005).
    [Crossref]
  6. T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
    [Crossref]
  7. H. B. Lan and Y. C. Ding, “Ordering, positioning and uniformity of quantum dot arrays,” Nano Today 7(2), 94–123 (2012).
    [Crossref]
  8. P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).
  9. A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
    [Crossref] [PubMed]
  10. P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
    [Crossref] [PubMed]
  11. S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
    [Crossref]
  12. P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
    [Crossref]
  13. Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
    [Crossref]
  14. Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
    [Crossref]
  15. X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
    [Crossref] [PubMed]
  16. W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
    [Crossref]
  17. M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
    [Crossref] [PubMed]
  18. E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
    [Crossref]
  19. M. Ldpez and Y. Nomura, “Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)-(110) facet structures,” J. Cryst. Growth 150, 68–72 (1995).
    [Crossref]
  20. K. Ohta, T. Kojima, and T. Nakagawa, “Anisotropic surface migration of Ga atoms on GaAs (001),” J. Cryst. Growth 95(1-4), 71–74 (1989).
    [Crossref]
  21. R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
    [Crossref] [PubMed]
  22. M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
    [Crossref]
  23. M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
    [Crossref]
  24. E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
    [Crossref]
  25. T. Sugaya, T. Amano, and K. Komori, “Improved optical properties of InAs quantum dots grown with an As2source using molecular bean epitaxy,” J. Appl. Phys. 100(6), 063107 (2007).
    [Crossref]
  26. Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
    [Crossref]
  27. B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
    [Crossref]
  28. W. Liu, B. L. Liang, D. L. Huffaker, and H. Fetterman, “Anisotropic performance of high speed electro-optic modulators with InGaAs quantum dot chain active region,” Opt. Lett. 38, 4262–4264 (2013).
    [Crossref] [PubMed]
  29. B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
    [Crossref]
  30. P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
    [Crossref] [PubMed]
  31. Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
    [Crossref]
  32. S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
    [Crossref]
  33. Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
    [Crossref] [PubMed]
  34. M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
    [Crossref]
  35. A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
    [Crossref]
  36. Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
    [Crossref]

2017 (1)

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

2015 (1)

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

2014 (2)

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

2013 (2)

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

W. Liu, B. L. Liang, D. L. Huffaker, and H. Fetterman, “Anisotropic performance of high speed electro-optic modulators with InGaAs quantum dot chain active region,” Opt. Lett. 38, 4262–4264 (2013).
[Crossref] [PubMed]

2012 (3)

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

H. B. Lan and Y. C. Ding, “Ordering, positioning and uniformity of quantum dot arrays,” Nano Today 7(2), 94–123 (2012).
[Crossref]

2011 (2)

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

2010 (1)

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

2008 (2)

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

2007 (4)

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

T. Sugaya, T. Amano, and K. Komori, “Improved optical properties of InAs quantum dots grown with an As2source using molecular bean epitaxy,” J. Appl. Phys. 100(6), 063107 (2007).
[Crossref]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

2006 (2)

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

2005 (1)

Z. Mi and P. Bhattacharya, “Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers,” J. Appl. Phys. 98(2), 023510 (2005).
[Crossref]

2004 (5)

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
[Crossref]

Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
[Crossref]

2003 (2)

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

2002 (1)

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

1999 (1)

M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
[Crossref]

1997 (1)

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

1995 (2)

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

M. Ldpez and Y. Nomura, “Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)-(110) facet structures,” J. Cryst. Growth 150, 68–72 (1995).
[Crossref]

1990 (1)

M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
[Crossref]

1989 (1)

K. Ohta, T. Kojima, and T. Nakagawa, “Anisotropic surface migration of Ga atoms on GaAs (001),” J. Cryst. Growth 95(1-4), 71–74 (1989).
[Crossref]

Abbey, B.

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

Abelmann, L.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

Ala-Nissila, T.

M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
[Crossref]

Alatalo, M.

M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
[Crossref]

Albrecht, A. R.

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Alonso-González, P.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

Amano, T.

T. Sugaya, T. Amano, and K. Komori, “Improved optical properties of InAs quantum dots grown with an As2source using molecular bean epitaxy,” J. Appl. Phys. 100(6), 063107 (2007).
[Crossref]

Arakawa, Y.

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

Arciprete, F.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Balakrishnan, G.

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Berschneider, K.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Bhattacharya, P.

Z. Mi and P. Bhattacharya, “Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers,” J. Appl. Phys. 98(2), 023510 (2005).
[Crossref]

Boutchich, M.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Brueck, S. R. J.

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

Cechavicius, B.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Chokamnuai, T.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Churchill, H.

Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
[Crossref]

Colocci, M.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Cooper, K.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Ding, Y. C.

H. B. Lan and Y. C. Ding, “Ordering, positioning and uniformity of quantum dot arrays,” Nano Today 7(2), 94–123 (2012).
[Crossref]

Dorogan, V. G.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

Dou, X. M.

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

Dwir, B.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Faist, J.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Felici, M.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Fernández-Martínez, I.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

Fetterman, H.

Forchel, A.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Franchi, S.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Frigeri, P.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Fu, G.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Fuster, D.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

Gallo, P.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

George, C. E.

Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
[Crossref]

González, L.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

González, Y.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

Grigoriev, D.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Grilli, E.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Guo, Q.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Gurioli, M.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Guzun, D.

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

Hanke, M.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Hata, M.

M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
[Crossref]

He, X.

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

Höfling, S.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Hogg, R.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Holmes, K.

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
[Crossref]

Hove, P.

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

Huffaker, D. L.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

W. Liu, B. L. Liang, D. L. Huffaker, and H. Fetterman, “Anisotropic performance of high speed electro-optic modulators with InGaAs quantum dot chain active region,” Opt. Lett. 38, 4262–4264 (2013).
[Crossref] [PubMed]

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Hussein, M. L.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Isu, T.

M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
[Crossref]

Jaffré, A.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Ji, Y.

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

Jiang, Q.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jittrong, A.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Johnson, M. B.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Jones, T. S.

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

Joyce, B. A.

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

Kamp, M.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Kanjanachuchai, S.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Kapon, E.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Karpus, V.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Katayama, Y.

M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
[Crossref]

Kavaliauskas, J.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Khanna, S. P.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Köhler, R.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Kojima, T.

K. Ohta, T. Kojima, and T. Nakagawa, “Anisotropic surface migration of Ga atoms on GaAs (001),” J. Cryst. Growth 95(1-4), 71–74 (1989).
[Crossref]

Komori, K.

T. Sugaya, T. Amano, and K. Komori, “Improved optical properties of InAs quantum dots grown with an As2source using molecular bean epitaxy,” J. Appl. Phys. 100(6), 063107 (2007).
[Crossref]

Lan, H. B.

H. B. Lan and Y. C. Ding, “Ordering, positioning and uniformity of quantum dot arrays,” Nano Today 7(2), 94–123 (2012).
[Crossref]

Latini, S.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Latini, V.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Ldpez, M.

M. Ldpez and Y. Nomura, “Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)-(110) facet structures,” J. Cryst. Growth 150, 68–72 (1995).
[Crossref]

Le Ru, E. C.

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

Lee, M. L.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Li, L. H.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Li, X.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Liang, B.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

Liang, B. L.

W. Liu, B. L. Liang, D. L. Huffaker, and H. Fetterman, “Anisotropic performance of high speed electro-optic modulators with InGaAs quantum dot chain active region,” Opt. Lett. 38, 4262–4264 (2013).
[Crossref] [PubMed]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

Linfield, E. H.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Little, J. W.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Liu, H. Y.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, W.

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Lytvyn, P. M.

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

Ma, W. Q.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Magri, R.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Maidaniuk, Y.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Maier, S.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Marega, E.

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

Martín-Sánchez, J.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

Mazur, Y.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Mazur, Y. I.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Mazur, Yu. I.

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Mi, Z.

Z. Mi and P. Bhattacharya, “Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers,” J. Appl. Phys. 98(2), 023510 (2005).
[Crossref]

Mishima, T. D.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Mitin, V.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Mohan, A.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Murray, R.

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

Muto, S.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Nakagawa, T.

K. Ohta, T. Kojima, and T. Nakagawa, “Anisotropic surface migration of Ga atoms on GaAs (001),” J. Cryst. Growth 95(1-4), 71–74 (1989).
[Crossref]

Nakata, Y.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Neave, J. H.

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

Nedzinskas, R.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Nicotra, G.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Nieminen, R. M.

M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
[Crossref]

Nishikawa, Y.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Nishioka, M.

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

Nomura, Y.

M. Ldpez and Y. Nomura, “Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)-(110) facet structures,” J. Cryst. Growth 150, 68–72 (1995).
[Crossref]

Nuntawong, N.

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Ohta, K.

K. Ohta, T. Kojima, and T. Nakagawa, “Anisotropic surface migration of Ga atoms on GaAs (001),” J. Cryst. Growth 95(1-4), 71–74 (1989).
[Crossref]

Panyakeow, S.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Patella, F.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Placidi, E.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Pozzi, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Reinhardt, K.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Ritchie, D. A.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Rotter, T. J.

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Rudra, A.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Sablon, K. A.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Salamo, G.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Salamo, G. J.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
[Crossref]

Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Salmi, M. A.

M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
[Crossref]

Sanguinetti, S.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Schäfer, P.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Schmidbauer, M.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Schneider, C.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Scuderi, M.

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

Seeds, A.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Sergeev, A.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Seydmohamadi, Sh.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Sheng, X.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Shields, A. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Shih, C. K.

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

Shultz, J. L.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Simmonds, P. J.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Steinl, T.

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

Stevenson, R. M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Sugaya, T.

T. Sugaya, T. Amano, and K. Komori, “Improved optical properties of InAs quantum dots grown with an As2source using molecular bean epitaxy,” J. Appl. Phys. 100(6), 063107 (2007).
[Crossref]

Sugiyama, Y.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Sun, B. Q.

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

Sun, M.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Tackeuchi, A.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Taddei, S.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Tarasov, G. G.

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

Tatebayashi, J.

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

Tok, E. S.

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

Tsukamoto, S.

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

Tutu, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Usuki, T.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Vagidov, N.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Valusis, G.

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Vinattieri, A.

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

Wada, O.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Wang, B. R.

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

Wang, S.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Wang, T.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wang, X.

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

Wang, X. Y.

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Wang, Y.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Wang, Z. M.

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Wang, Zh. M.

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
[Crossref]

Wang, ZhM.

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Ware, M. E.

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

Watanabe, A.

M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
[Crossref]

Wong, P. S.

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

Xiao, M.

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Xu, M.

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Xu, Z. Y.

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

Yang, T.

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

Yerino, C. D.

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Yokoyama, N.

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Zhang, J.

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

Zhuchenko, Z. Y.

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

ACS Nano (1)

P. J. Simmonds, C. D. Yerino, M. Sun, B. Liang, D. L. Huffaker, V. G. Dorogan, Y. Mazur, G. Salamo, and M. L. Lee, “Tuning quantum dot luminescence below the bulk band gap using tensile strain,” ACS Nano 7(6), 5017–5023 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

B. R. Wang, B. Q. Sun, Y. Ji, X. M. Dou, Z. Y. Xu, Zh. M. Wang, and G. J. Salamo, “Optical study of lateral carrier transfer in (In, Ga)As/GaAs quantum-dot chains,” Appl. Phys. Lett. 93(1), 011107 (2008).
[Crossref]

B. L. Liang, P. S. Wong, N. Nuntawong, A. R. Albrecht, J. Tatebayashi, T. J. Rotter, G. Balakrishnan, and D. L. Huffaker, “Optical properties of patterned InAs quantum dot ensembles grown on GaAs nano-pyramids,” Appl. Phys. Lett. 91(24), 243106 (2007).
[Crossref]

M. Gurioli, S. Sanguinetti, E. Grilli, S. Taddei, A. Vinattieri, M. Colocci, P. Frigeri, and S. Franchi, “Disorder–induced localized states in InAs/GaAs multilayer quantum dots,” Appl. Phys. Lett. 83(11), 2262–2264 (2003).
[Crossref]

T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Photoluminescence linewidth (meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(15), 2817–2819 (2004).
[Crossref]

Yu. I. Mazur, W. Q. Ma, X. Y. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “InGaAs/GaAs three-dimensionally-ordered array of quantum dots,” Appl. Phys. Lett. 83(5), 987–989 (2003).
[Crossref]

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, “Fabrication of (In,Ga)As quantum-dot chains on GaAs(100),” Appl. Phys. Lett. 84(11), 1931–1933 (2004).
[Crossref]

E. Placidi, F. Arciprete, V. Latini, S. Latini, R. Magri, M. Scuderi, G. Nicotra, and F. Patella, “Manipulating surface diffusion and elastic Interactions to obtain quantum dot multilayer arrangements over different length scales,” Appl. Phys. Lett. 105(11), 111905 (2014).
[Crossref]

J. Appl. Phys. (5)

Z. Mi and P. Bhattacharya, “Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers,” J. Appl. Phys. 98(2), 023510 (2005).
[Crossref]

Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo, “Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots,” J. Appl. Phys. 101(1), 014301 (2007).
[Crossref]

T. Sugaya, T. Amano, and K. Komori, “Improved optical properties of InAs quantum dots grown with an As2source using molecular bean epitaxy,” J. Appl. Phys. 100(6), 063107 (2007).
[Crossref]

Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, “High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures,” J. Appl. Phys. 96(11), 2908 (2004).
[Crossref]

Yu. I. Mazur, V. G. Dorogan, M. E. Ware, E. Marega, P. M. Lytvyn, Z. Y. Zhuchenko, G. G. Tarasov, and G. J. Salamo, “Effective of dimensionality and morphology on polarized photoluminescence in dot-chain structures,” J. Appl. Phys. 112, 084314 (2012).
[Crossref]

J. Cryst. Growth (2)

M. Ldpez and Y. Nomura, “Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)-(110) facet structures,” J. Cryst. Growth 150, 68–72 (1995).
[Crossref]

K. Ohta, T. Kojima, and T. Nakagawa, “Anisotropic surface migration of Ga atoms on GaAs (001),” J. Cryst. Growth 95(1-4), 71–74 (1989).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Hata, T. Isu, A. Watanabe, and Y. Katayama, “Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction,” J. Vac. Sci. Technol. B 8(4), 692–696 (1990).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Usuki, Y. Nishikawa, N. Yokoyama, and O. Wada, “Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots,” Jpn. J. Appl. Phys. 34(11A), L1439 (1995).
[Crossref]

Nano Lett. (2)

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, “Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains,” Nano Lett. 6(9), 1847–1851 (2006).
[Crossref] [PubMed]

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref] [PubMed]

Nano Today (1)

H. B. Lan and Y. C. Ding, “Ordering, positioning and uniformity of quantum dot arrays,” Nano Today 7(2), 94–123 (2012).
[Crossref]

Nanoscale Res. Lett. (2)

R. Nedzinskas, B. Cechavicius, J. Kavaliauskas, V. Karpus, G. Valusis, L. H. Li, S. P. Khanna, and E. H. Linfield, “Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux,” Nanoscale Res. Lett. 7, 609 (2012).
[Crossref] [PubMed]

Y. Wang, X. Sheng, Q. Guo, X. Li, S. Wang, G. Fu, Y. I. Mazur, Y. Maidaniuk, M. E. Ware, G. J. Salamo, B. Liang, and D. L. Huffaker, “Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs single quantum well with different thickness,” Nanoscale Res. Lett. 12(1), 229 (2017).
[Crossref] [PubMed]

Nanotechnology (2)

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelmann, “New process for high optical quality InAs quantum dots grown on patterned GaAs (001) substrates,” Nanotechnology 18(35), 355302 (2007).
[Crossref]

P. S. Wong, B. L. Liang, V. G. Dorogan, A. R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y. I. Mazur, G. J. Salamo, S. R. J. Brueck, and D. L. Huffaker, “Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure,” Nanotechnology 19(43), 435710 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane Spatial Ordering of Quantum Dots,” Phys. Rev. B 69(23), 233312 (2004).
[Crossref]

Phys. Rev. Lett. (1)

M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, ZhM. Wang, Y. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, “Controlling planar and vertical ordering in three-dimensional (In,Ga)As quantum dot lattices by GaAs surface orientation,” Phys. Rev. Lett. 96(6), 066108 (2006).
[Crossref] [PubMed]

Science (1)

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

S. Maier, K. Berschneider, T. Steinl, A. Forchel, S. Höfling, C. Schneider, and M. Kamp, “Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength,” Semicond. Sci. Technol. 29(5), 052001 (2014).
[Crossref]

S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, and M. Boutchich, “Excitation transfer in stacked quantum dot chains,” Semicond. Sci. Technol. 30(5), 055005 (2015).
[Crossref]

Small (1)

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6(12), 1268–1272 (2010).
[Crossref] [PubMed]

Surf. Sci. (2)

M. A. Salmi, M. Alatalo, T. Ala-Nissila, and R. M. Nieminen, “Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces,” Surf. Sci. 425(1), 31–47 (1999).
[Crossref]

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, “Arsenic incorporation kinetics in GaAs (001) homoepitaxy revisited,” Surf. Sci. 374(1-3), 397–405 (1997).
[Crossref]

Thin Solid Films (1)

P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464–465, 225–228 (2004).

Other (1)

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, (Wiley: New York, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Morphology study of the QDs for sample A grown with As4 and sample B grown with As2. (a) and (d) are 1μm x 1μm AFM images to show the InGaAs QDs for sample A grown with As4 and sample B grown with As2. The insets show the corresponding three-dimensional plot for the auto-correlation image of the AFM. (b) and (e) are the profiles along [011] and [01-1] directions from the auto-correlation image in the inset for sample A and sample B, respectively. (c) and (f) are the histogram of QD height distribution for sample A and sample B.
Fig. 2
Fig. 2 Low temperature (T = 8 K) PL spectra. (a) and (b) are the low temperature PL spectra for sample A and sample B measured with an excitation intensity of 0.03 W/cm2.
Fig. 3
Fig. 3 The polarized PL spectra. (a) and (b) are the polarized PL spectra for sample A and sample B measured at 8 K with a laser excitation intensity of 0.03 W/cm2,the inset polar plots show the variation of PL intensity with polarization direction
Fig. 4
Fig. 4 Excitation laser intensity-dependent PL measurements for both samples. (a) and (b) show the PL spectral profile measured at 10K as a function of the laser intensity. (c) the FWHM as a function of the temperature.
Fig. 5
Fig. 5 Temperature-dependent PL measurements for both samples. (a) and (b) show the peak energy shift as a function of the temperature where the dash curve is calculated results from the InGaAs band gap according to the Varshni law, (c) and (d) are the FWHM as a function of the temperature, (e) and (f) are the integrated PL intensity as a function of the temperature.
Fig. 6
Fig. 6 TRPL measurements. (a) PL decay curves measured at QD peak wavelength at T = 8 K. (b) PL spectrum and lifetime measured at different wavelengths for sample A. (c) PL spectrum and lifetime measured at different wavelengths for sample B.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P=| I [011] I [011] I [011] + I [011] |%
I(T)= I 0 /[1+ C 1 exp( E 1 /kT)+ C 2 exp( E 2 /kT)]
I(t)=I(0)exp(t/τ)

Metrics