Abstract

A novel method to simultaneously detect power imbalance, modulation strength, and bias drift of coherent IQ transmitter during the initial power-up is presented. This is achieved by sweeping gain scaling factor of finite impulse filter in a digital domain and monitoring the combined output power. Furthermore, by dithering gain scaling factor of finite impulse filter, the power imbalance is measured with live traffic. Those impairments can be compensated accordingly. For example, the power imbalance is compensated through adjustment of gain setting of a radio frequency amplifier. This novel method works for multiple channels over C band, and the built-in photodiode of coherent transmitter provides sufficient accuracy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Blind Transmitter IQ Imbalance Compensation in M-QAM Optical Coherent Systems

Trung-Hien Nguyen, Pascal Scalart, Mathilde Gay, Laurent Bramerie, Olivier Sentieys, Jean-Claude Simon, Christophe Peucheret, and Michel Joindot
J. Opt. Commun. Netw. 9(9) D42-D50 (2017)

Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maximum likelihood independent component analysis

Qun Zhang, Yanfu Yang, Changjian Guo, Xian Zhou, Yong Yao, Alan Pak Tao Lau, and Chao Lu
Opt. Express 27(13) 18055-18068 (2019)

Transmitter skew tolerance and spectral efficiency tradeoff in high baud-rate QAM optical communication systems

Yang Yue, Qiang Wang, and Jon Anderson
Opt. Express 26(12) 15045-15058 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: capacity, flexibility, and network optimization,” J. Opt. Commun. Netw. 9(4), C12–C24 (2017).
    [Crossref]
  2. J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  3. B. Châtelain, C. Laperle, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, and D. V. Plant, “A family of Nyquist pulses for coherent optical communications,” Opt. Express 20(8), 8397–8416 (2012).
    [Crossref] [PubMed]
  4. J. Wang and Z. Pan, “Generate Nyquist-WDM Signal Using a DAC With Zero-Order Holding at the Symbol Rate,” J. Lightwave Technol. 32(24), 4085–4091 (2014).
  5. F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
    [Crossref]
  6. J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. 36(1), 103–113 (2018).
    [Crossref]
  7. M. Sotoodeh, Y. Beaulieu, J. Harley, and D. McGhan, “Modulator Bias and Optical Power Control of Optical Complex E-Field Modulators,” J. Lightwave Technol. 29(15), 2235–2248 (2011).
    [Crossref]
  8. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
    [Crossref]
  9. M. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature Imbalance in Coherent-Receiver Front End for Optical Quadrature Amplitude Modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
    [Crossref]
  10. C. Fludger and T. Kupfer, “Transmitter Impairment Mitigation and Monitoring for High Baud-Rate, High Order Modulation Systems,” in European Conference on Optical Communication (2016), paper Tu.2.A.2.
  11. Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).
  12. J. Diniz, F. Da Ros, E. Da Silva, R. Jones, and D. Zibar, “Optimization of DP-MQAM Transmitter Using Cooperative Coevolutionary Genetic Algorithm,” J. Lightwave Technol. 36(12), 2450–2462 (2018).
    [Crossref]
  13. H. Chaouch and M. Filer, “Analog Coherent Optics for Long Haul Datacenter Regional Networks,” J. Lightwave Technol. 36(2), 372–376 (2018).
    [Crossref]
  14. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
    [Crossref]
  15. F. Lu, B. Zhang, Y. Yue, J. Anderson, and G. Chang, “Investigation of Pre-Equalization Technique for Pluggable CFP2-ACO Transceivers in Beyond 100 Gb/s Transmissions,” J. Lightwave Technol. 35(2), 230–237 (2017).
    [Crossref]
  16. “Sequential quadratic programming,” https://en.wikipedia.org/wiki/Sequential_quadratic_programming
  17. Q. Wang, Y. Yue, and J. Anderson, “Detection and Compensation of Bandwidth Limitation and Modulation Nonlinearity in Coherent IQ Transmitter”, accepted by European Conference on Optical Communication (2018), paper Th.2.25.
  18. Z. Zhang, C. Li, J. Chen, T. Ding, Y. Wang, H. Xiang, Z. Xiao, L. Li, M. Si, and X. Cui, “Coherent transceiver operating at 61-Gbaud/s,” Opt. Express 23(15), 18988–18995 (2015).
    [Crossref] [PubMed]
  19. Q. Wang, Y. Yue, X. He, A. Vovan, and J. Anderson, “Accurate model to predict performance of coherent optical transponder for high baud rate and advanced modulation format,” Opt. Express 26(10), 12970–12984 (2018).
    [Crossref] [PubMed]
  20. M. Faruk and S. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
    [Crossref]
  21. “Coefficient of determination,” https://en.wikipedia.org/wiki/Coefficient_of_determination
  22. H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto Bias Control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express 19(26), B308–B312 (2011).
    [Crossref] [PubMed]
  23. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
    [Crossref] [PubMed]
  24. H. S. Chung, S. H. Chang, J. H. Lee, and K. Kim, “Field trial of automatic bias control scheme for optical IQ modulator and demodulator with directly detected 112 Gb/s DQPSK Signal,” Opt. Express 21(21), 24962–24968 (2013).
    [Crossref] [PubMed]
  25. X. Li, L. Deng, X. Chen, M. Cheng, S. Fu, M. Tang, and D. Liu, “Modulation-format-free and automatic bias control for optical IQ modulators based on dither-correlation detection,” Opt. Express 25(8), 9333–9345 (2017).
    [Crossref] [PubMed]

2018 (4)

2017 (5)

2016 (1)

2015 (3)

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Z. Zhang, C. Li, J. Chen, T. Ding, Y. Wang, H. Xiang, Z. Xiao, L. Li, M. Si, and X. Cui, “Coherent transceiver operating at 61-Gbaud/s,” Opt. Express 23(15), 18988–18995 (2015).
[Crossref] [PubMed]

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (1)

2011 (2)

2008 (1)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Adamiecki, A.

Anderson, J.

Beaulieu, Y.

Bocherer, G.

Borowiec, A.

Buchali, F.

Burrows, E.

Chagnon, M.

Chandrasekhar, S.

Chang, G.

Chang, S. H.

Chaouch, H.

Châtelain, B.

Chen, J.

Chen, X.

Cheng, M.

Cheng, Q.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Cho, J.

Chung, H. S.

Correa, D.

Corteselli, S.

Cui, X.

Cunningham, D.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Da Ros, F.

Da Silva, E.

Dar, R.

Deng, L.

Ding, T.

Diniz, J.

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

Faruk, M.

M. Faruk and S. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

M. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature Imbalance in Coherent-Receiver Front End for Optical Quadrature Amplitude Modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Filer, M.

Fludger, C.

C. Fludger and T. Kupfer, “Transmitter Impairment Mitigation and Monitoring for High Baud-Rate, High Order Modulation Systems,” in European Conference on Optical Communication (2016), paper Tu.2.A.2.

Fu, S.

Gagnon, F.

Gareau, S.

Grubb, S.

Gui, T.

Harley, J.

He, X.

Idler, W.

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Jin, C.

Jones, R.

Kawakami, H.

Kikuchi, K.

M. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature Imbalance in Coherent-Receiver Front End for Optical Quadrature Amplitude Modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Kim, K.

Kobayashi, T.

Kupfer, T.

C. Fludger and T. Kupfer, “Transmitter Impairment Mitigation and Monitoring for High Baud-Rate, High Order Modulation Systems,” in European Conference on Optical Communication (2016), paper Tu.2.A.2.

Laperle, C.

Lee, J. H.

Li, C.

Li, L.

Li, X.

Li, Z.

Liu, D.

Lu, F.

McGhan, D.

McKay, B.

Meng, L.

Miyamoto, Y.

Monga, I.

Pan, Y.

Pan, Z.

Penty, R.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Plant, D. V.

Raybon, G.

Roberts, K.

Savory, S.

Savory, S. J.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Schmalen, L.

Schulte, P.

Si, M.

Sotoodeh, M.

Steiner, F.

Tang, M.

Vovan, A.

Q. Wang, Y. Yue, X. He, A. Vovan, and J. Anderson, “Accurate model to predict performance of coherent optical transponder for high baud rate and advanced modulation format,” Opt. Express 26(10), 12970–12984 (2018).
[Crossref] [PubMed]

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Wang, J.

Wang, Q.

Q. Wang, Y. Yue, X. He, A. Vovan, and J. Anderson, “Accurate model to predict performance of coherent optical transponder for high baud rate and advanced modulation format,” Opt. Express 26(10), 12970–12984 (2018).
[Crossref] [PubMed]

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Wang, Y.

Wei, J.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

White, I.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Winzer, P.

Xiang, H.

Xiao, X.

Xiao, Z.

Xu, X.

Yang, Q.

Yi, X.

Yoshida, E.

Yue, Y.

Zhang, B.

F. Lu, B. Zhang, Y. Yue, J. Anderson, and G. Chang, “Investigation of Pre-Equalization Technique for Pluggable CFP2-ACO Transceivers in Beyond 100 Gb/s Transmissions,” J. Lightwave Technol. 35(2), 230–237 (2017).
[Crossref]

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Zhang, Z.

Zhuge, Q.

Zibar, D.

Zsigmond, S.

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

IEEE Commun. Mag. (1)

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE Photonics J. (1)

M. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature Imbalance in Coherent-Receiver Front End for Optical Quadrature Amplitude Modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

J. Lightwave Technol. (8)

J. Wang and Z. Pan, “Generate Nyquist-WDM Signal Using a DAC With Zero-Order Holding at the Symbol Rate,” J. Lightwave Technol. 32(24), 4085–4091 (2014).

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. 36(1), 103–113 (2018).
[Crossref]

M. Sotoodeh, Y. Beaulieu, J. Harley, and D. McGhan, “Modulator Bias and Optical Power Control of Optical Complex E-Field Modulators,” J. Lightwave Technol. 29(15), 2235–2248 (2011).
[Crossref]

J. Diniz, F. Da Ros, E. Da Silva, R. Jones, and D. Zibar, “Optimization of DP-MQAM Transmitter Using Cooperative Coevolutionary Genetic Algorithm,” J. Lightwave Technol. 36(12), 2450–2462 (2018).
[Crossref]

H. Chaouch and M. Filer, “Analog Coherent Optics for Long Haul Datacenter Regional Networks,” J. Lightwave Technol. 36(2), 372–376 (2018).
[Crossref]

F. Lu, B. Zhang, Y. Yue, J. Anderson, and G. Chang, “Investigation of Pre-Equalization Technique for Pluggable CFP2-ACO Transceivers in Beyond 100 Gb/s Transmissions,” J. Lightwave Technol. 35(2), 230–237 (2017).
[Crossref]

M. Faruk and S. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Express (7)

B. Châtelain, C. Laperle, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, and D. V. Plant, “A family of Nyquist pulses for coherent optical communications,” Opt. Express 20(8), 8397–8416 (2012).
[Crossref] [PubMed]

Z. Zhang, C. Li, J. Chen, T. Ding, Y. Wang, H. Xiang, Z. Xiao, L. Li, M. Si, and X. Cui, “Coherent transceiver operating at 61-Gbaud/s,” Opt. Express 23(15), 18988–18995 (2015).
[Crossref] [PubMed]

Q. Wang, Y. Yue, X. He, A. Vovan, and J. Anderson, “Accurate model to predict performance of coherent optical transponder for high baud rate and advanced modulation format,” Opt. Express 26(10), 12970–12984 (2018).
[Crossref] [PubMed]

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto Bias Control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express 19(26), B308–B312 (2011).
[Crossref] [PubMed]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
[Crossref] [PubMed]

H. S. Chung, S. H. Chang, J. H. Lee, and K. Kim, “Field trial of automatic bias control scheme for optical IQ modulator and demodulator with directly detected 112 Gb/s DQPSK Signal,” Opt. Express 21(21), 24962–24968 (2013).
[Crossref] [PubMed]

X. Li, L. Deng, X. Chen, M. Cheng, S. Fu, M. Tang, and D. Liu, “Modulation-format-free and automatic bias control for optical IQ modulators based on dither-correlation detection,” Opt. Express 25(8), 9333–9345 (2017).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Other (4)

“Coefficient of determination,” https://en.wikipedia.org/wiki/Coefficient_of_determination

“Sequential quadratic programming,” https://en.wikipedia.org/wiki/Sequential_quadratic_programming

Q. Wang, Y. Yue, and J. Anderson, “Detection and Compensation of Bandwidth Limitation and Modulation Nonlinearity in Coherent IQ Transmitter”, accepted by European Conference on Optical Communication (2018), paper Th.2.25.

C. Fludger and T. Kupfer, “Transmitter Impairment Mitigation and Monitoring for High Baud-Rate, High Order Modulation Systems,” in European Conference on Optical Communication (2016), paper Tu.2.A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Block diagram of coherent IQ transmitter and DSP ASIC on transmitter side. LD: laser diode, PS: phase shifter, Pol-Rot: polarization rotator, PBC: polarization beam combiner, PD: photo diode, FEC: forward error correction, DAC: digital-to-analog converter, VOA: variable optical attenuator, SOA: semiconductor optical amplifier, TOC: tunable optical coupler.
Fig. 2
Fig. 2 Frequency response of FIR filter with difference gain scaling factor. The spectral shapes of different filters remain nearly the same.
Fig. 3
Fig. 3 (a) Experimental setup with the line-side DWDM optics and the client-side grey optics using the core IP router. (b) Architecture of packet optical integration for the line-side DWDM coherent PIC.
Fig. 4
Fig. 4 Output of RF peak detector versus gain scaling factor for four tributaries. A line curve fitting and the R2 value are also shown. Here R2 is the coefficient of determination ranging between 0 and 1 [21]. A value of 1 indicates a linear fit perfectly predicts the data.
Fig. 5
Fig. 5 Experimental results versus curve-fitting results for three typical cases. (a) Bias at null point. (b) Bias drifted away from null point. (c) Bias significantly drifted away from null point.
Fig. 6
Fig. 6 Top: BER versus gain scaling factor for three channels. Bottom: Q2 factor versus gain scaling factor for three channels. Red dotted lines indicate the dithering range of gain scaling factor with live traffic.
Fig. 7
Fig. 7 (a) IQ imbalance in X polarization over C band. (b) IQ imbalance in Y polarization over C band. (c) XY imbalance between two polarizations over C band. The green arrows indicate the channels with large imbalance which will be compensated next.
Fig. 8
Fig. 8 Compensation of IQ imbalance through the adjustment of gain setting of RF amplifier.

Tables (2)

Tables Icon

Table 1 The results for the initial power-up calibration (green section) and the results with the live traffic (blue section).

Tables Icon

Table 2 The compensation methods for the underlying root causes of the imbalance in the coherent IQ transmitter

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

y(n)= j=0 N1 h(j) *x(nj),x{ 1,+1 }.
h new (Scale,j)=ROUND[ h ini (j)*Scale ].
χ( j )=sign[ h(N1j) ],j=0,1,...,N1 y max = j=0 N1 h(j)* χ(N1j)= j=0 N1 h(j)* sign[ h(j) ]= j=0 N1 | h(j) | .
V swing = j=1 N | h new (Scale,j) | /(2^Bi t DAC )* V DAC *I L trace *Gai n amp *B W MZM
P out = P trib i ,i=XI,XQ,YI,YQ P trib i = p i cos 2 [ 0.5π( V swing i / V π i + V bias i / V null i ) ].
j=1 N | h new (Scale,j) | = j=1 N | ROUND( Scale* h ini (j) ) | Scale* j=1 N | h ini (j) | α= j=1 N | h ini (j) | * V DAC /(2^Bi t DAC )*I L trace *Gai n amp *B W MZM / V π β= V bias / V null P trib i ( Scale ) p i cos 2 [ 0.5π( Scal e i * α i + β i ) ], P out = P trib i .
Δ P i (Scal e i )= P out i P out ini = p i cos 2 [ 0.5π( α i *Scal e i + β i ) ] p i cos 2 [ 0.5π( α i + β i ) ].
Er r rms i = m=1 M [ Δ P meas i (m)Δ P fit i (m) ] 2 /M.
P ini i = p i cos 2 [ 0.5π( α i + β i ) ],i=XI,XQ,YI,YQ IM B IQ,X =10* log 10 P ini XI P ini XQ IM B IQ,Y =10* log 10 P ini YI P ini YQ IM B XY =10* log 10 P ini XI + P ini XQ P ini YI + P ini YQ .
Δ P i 0.5π p i sin( π α i +π β i ) α i *(Scal e i 1) slop e i Δ P i Scal e i 1 0.5π p i α i *sin( π α i +π β i ).
IM B IQ,X 10* log 10 slop e XI slop e XQ ,IM B IQ,Y 10* log 10 slop e YI slop e YQ IM B XY 10* log 10 slop e XI +slop e XQ slop e YI +slop e YQ .

Metrics