Abstract

We propose a dielectric laser accelerator design based on a tapered slot waveguide structure for sub-relativistic electron acceleration. This tapering scheme allows for straightforward tuning of the phase velocity of the accelerating field along the propagation direction, which is necessary for maintaining synchronization with electrons as their velocities increase. Furthermore, the non-resonant nature of this design allows for better tolerance to experimental errors. We also introduce a method to design this continuously tapered structure based on the eikonal approximation, and give a working example based on realistic experimental parameters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff
Opt. Express 25(16) 19195-19204 (2017)

Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser

D. Cesar, J. Maxson, X. Shen, K. P. Wootton, S. Tan, R. J. England, and P. Musumeci
Opt. Express 26(22) 29216-29224 (2018)

Method for computationally efficient design of dielectric laser accelerator structures

Tyler Hughes, Georgios Veronis, Kent P. Wootton, R. Joel England, and Shanhui Fan
Opt. Express 25(13) 15414-15427 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
    [Crossref] [PubMed]
  2. L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
    [Crossref]
  3. F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
    [Crossref]
  4. E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
    [Crossref] [PubMed]
  5. T. Plettner, P. Lu, and R. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Physical Review Special Topics-Accelerators and Beams 9, 111301 (2006).
    [Crossref]
  6. J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Physical Review Letters 111, 134803 (2013).
    [Crossref] [PubMed]
  7. K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).
  8. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Reviews of Modern Physics 75, 325 (2003).
    [Crossref]
  9. K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
    [Crossref] [PubMed]
  10. R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
    [Crossref]
  11. K. Wootton, J. McNeur, and K. Leedle, “Dielectric laser accelerators: designs, experiments, and applications,” Reviews of Accelerator Science and Technology 9, 105–126 (2016).
    [Crossref]
  12. K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
    [Crossref] [PubMed]
  13. J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures–theory and simulations,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 234004 (2014).
    [Crossref]
  14. M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
    [Crossref]
  15. M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
    [Crossref] [PubMed]
  16. H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).
  17. J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
    [Crossref]
  18. F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
    [Crossref]
  19. A. Hanuka and L. Schächter, “Trapping of sub-relativistic particles in laser driven accelerators,” Physics of Plasmas 24, 123116 (2017).
    [Crossref]
  20. T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
    [Crossref]
  21. E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).
  22. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” Journal of Computational Physics 231, 3406–3431 (2012).
    [Crossref]
  23. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  24. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
    [Crossref] [PubMed]
  25. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
    [Crossref] [PubMed]
  26. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  27. J. J. Sakurai and S. F. Tuan, Modern quantum mechanics (Addison-Wesley Pub. Co., 1994), revised ed.
  28. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Physical Review Letters 93, 137404 (2004).
    [Crossref] [PubMed]
  29. P. M. Lapostolle and A. L. Septier, Linear Accelerators (North Holland Publishing Company, 1970).
  30. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
    [Crossref]
  31. J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” International Journal of Heat and Mass Transfer 48, 501–509 (2005).
    [Crossref]
  32. B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
    [Crossref] [PubMed]
  33. B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
    [Crossref] [PubMed]
  34. D. A. Swenson, “Alternating phase focused linacs,” Part. Accel. 7, 61–67 (1976).
  35. B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Physical Review Special Topics-Accelerators and Beams 11, 011301 (2008).
    [Crossref]
  36. U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff, “Alternating phase focusing for dielectric laser acceleration,” arXiv preprint arXiv:1806.07287 (2018).
  37. S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.
  38. K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
    [Crossref]
  39. U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics analysis of dielectric laser acceleration using a fast 6d tracking scheme,” Physical Review Accelerators and Beams 20, 111302 (2017).
    [Crossref]
  40. A. Hanuka and L. Schächter, “Operation regimes of a dielectric laser accelerator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888, 147–152 (2018).
    [Crossref]
  41. A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
    [Crossref]
  42. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
    [Crossref]
  43. W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
    [Crossref]
  44. T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
    [Crossref] [PubMed]
  45. E. A. Peralta, “Accelerator on a chip: design, fabrication, and demonstration of grating-based dielectric microstructures for laser-driven acceleration,” Ph.D. thesis, Stanford University (2015).
  46. R. Siemann, “Energy efficiency of laser driven, structure based accelerators,” Physical Review Special Topics-Accelerators and Beams 7, 061303 (2004).
    [Crossref]
  47. K. Bane and G. Stupakov, “Using surface impedance for calculating wakefields in flat geometry,” Physical Review Special Topics-Accelerators and Beams 18, 034401 (2015).
    [Crossref]
  48. Y. N. Na, R. Siemann, and R. Byer, “Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser,” Physical Review Special Topics-Accelerators and Beams 8, 031301 (2005).
    [Crossref]

2018 (4)

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

A. Hanuka and L. Schächter, “Operation regimes of a dielectric laser accelerator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888, 147–152 (2018).
[Crossref]

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

2017 (7)

U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics analysis of dielectric laser acceleration using a fast 6d tracking scheme,” Physical Review Accelerators and Beams 20, 111302 (2017).
[Crossref]

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

A. Hanuka and L. Schächter, “Trapping of sub-relativistic particles in laser driven accelerators,” Physics of Plasmas 24, 123116 (2017).
[Crossref]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

2016 (3)

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

K. Wootton, J. McNeur, and K. Leedle, “Dielectric laser accelerators: designs, experiments, and applications,” Reviews of Accelerator Science and Technology 9, 105–126 (2016).
[Crossref]

2015 (2)

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

K. Bane and G. Stupakov, “Using surface impedance for calculating wakefields in flat geometry,” Physical Review Special Topics-Accelerators and Beams 18, 034401 (2015).
[Crossref]

2014 (2)

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures–theory and simulations,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 234004 (2014).
[Crossref]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

2013 (3)

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Physical Review Letters 111, 134803 (2013).
[Crossref] [PubMed]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

2012 (3)

B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
[Crossref] [PubMed]

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” Journal of Computational Physics 231, 3406–3431 (2012).
[Crossref]

2010 (1)

K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
[Crossref]

2009 (2)

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

2008 (1)

B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Physical Review Special Topics-Accelerators and Beams 11, 011301 (2008).
[Crossref]

2006 (1)

T. Plettner, P. Lu, and R. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Physical Review Special Topics-Accelerators and Beams 9, 111301 (2006).
[Crossref]

2005 (2)

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” International Journal of Heat and Mass Transfer 48, 501–509 (2005).
[Crossref]

Y. N. Na, R. Siemann, and R. Byer, “Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser,” Physical Review Special Topics-Accelerators and Beams 8, 031301 (2005).
[Crossref]

2004 (4)

R. Siemann, “Energy efficiency of laser driven, structure based accelerators,” Physical Review Special Topics-Accelerators and Beams 7, 061303 (2004).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Physical Review Letters 93, 137404 (2004).
[Crossref] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
[Crossref] [PubMed]

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
[Crossref]

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Reviews of Modern Physics 75, 325 (2003).
[Crossref]

2002 (1)

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

1995 (1)

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

1976 (1)

D. A. Swenson, “Alternating phase focused linacs,” Part. Accel. 7, 61–67 (1976).

Adamo, G.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

Almeida, V. R.

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Aßmann, R.

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

Baets, R.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Bane, K.

K. Bane and G. Stupakov, “Using surface impedance for calculating wakefields in flat geometry,” Physical Review Special Topics-Accelerators and Beams 18, 034401 (2015).
[Crossref]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Beck, P.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Beraun, J.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” International Journal of Heat and Mass Transfer 48, 501–509 (2005).
[Crossref]

Bernstein, G. H.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
[Crossref]

Black, D. S.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Bogaerts, W.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Boine-Frankenheim, O.

U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics analysis of dielectric laser acceleration using a fast 6d tracking scheme,” Physical Review Accelerators and Beams 20, 111302 (2017).
[Crossref]

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff, “Alternating phase focusing for dielectric laser acceleration,” arXiv preprint arXiv:1806.07287 (2018).

Bonse, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

Breuer, J.

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures–theory and simulations,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 234004 (2014).
[Crossref]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Physical Review Letters 111, 134803 (2013).
[Crossref] [PubMed]

Byer, R.

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

T. Plettner, P. Lu, and R. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Physical Review Special Topics-Accelerators and Beams 9, 111301 (2006).
[Crossref]

Y. N. Na, R. Siemann, and R. Byer, “Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser,” Physical Review Special Topics-Accelerators and Beams 8, 031301 (2005).
[Crossref]

Byer, R. L.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Ceballos, A.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

Cesar, D.

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

Chang, C.-M.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Chen, J.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” International Journal of Heat and Mass Transfer 48, 501–509 (2005).
[Crossref]

Colby, E.

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

Cowan, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Cowan, B. M.

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Physical Review Special Topics-Accelerators and Beams 11, 011301 (2008).
[Crossref]

Cui, K.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Reviews of Modern Physics 75, 325 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Dawson, J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

de Abajo, F. G.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

De Loos, M.

S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.

Deng, H.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Dowell, D. H.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Dumon, P.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Egenolf, T.

U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics analysis of dielectric laser acceleration using a fast 6d tracking scheme,” Physical Review Accelerators and Beams 20, 111302 (2017).
[Crossref]

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff, “Alternating phase focusing for dielectric laser acceleration,” arXiv preprint arXiv:1806.07287 (2018).

England, R.

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

England, R. J.

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Fan, S.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” Journal of Computational Physics 231, 3406–3431 (2012).
[Crossref]

Feit, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

Feldman, D. W.

K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
[Crossref]

Feng, X.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Floettmann, K.

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

Förster, M.

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

Fu, Y.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

Gai, W.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Gaida, C.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Garcia, M. E.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

Gebhardt, M.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Hanuka, A.

A. Hanuka and L. Schächter, “Operation regimes of a dielectric laser accelerator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888, 147–152 (2018).
[Crossref]

A. Hanuka and L. Schächter, “Trapping of sub-relativistic particles in laser driven accelerators,” Physics of Plasmas 24, 123116 (2017).
[Crossref]

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

Harris, J.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

Harris, J. S.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Hartl, I.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Holzwarth, R.

Hommelhoff, P.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures–theory and simulations,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 234004 (2014).
[Crossref]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Physical Review Letters 111, 134803 (2013).
[Crossref] [PubMed]

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff, “Alternating phase focusing for dielectric laser acceleration,” arXiv preprint arXiv:1806.07287 (2018).

Hoogland, H.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Hu, W.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
[Crossref]

Huang, Y.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Huang, Y.-C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Hughes, T.

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

Hughes, T. W.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Ilic, O.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

Jaenen, P.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Jensen, K. L.

K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
[Crossref]

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

Jiang, J.

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Jing, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Joannopoulos, J. D.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Kaminer, I.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

Kärtner, F.

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

Kautek, W.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

Kozák, M.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Krüger, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

Lapostolle, P. M.

P. M. Lapostolle and A. L. Septier, Linear Accelerators (North Holland Publishing Company, 1970).

Leedle, K.

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

K. Wootton, J. McNeur, and K. Leedle, “Dielectric laser accelerators: designs, experiments, and applications,” Reviews of Accelerator Science and Technology 9, 105–126 (2016).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Leedle, K. J.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Lemery, F.

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

Lenzner, M.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

Li, H.

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Lieberman, M.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
[Crossref]

Limpert, J.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Lipson, M.

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Liu, F.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Lu, P.

T. Plettner, P. Lu, and R. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Physical Review Special Topics-Accelerators and Beams 9, 111301 (2006).
[Crossref]

Luiten, O.

S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.

MacDonald, K. F.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

Makasyuk, I. V.

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

Maxson, J.

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

McGuinness, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

McNeur, J.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

K. Wootton, J. McNeur, and K. Leedle, “Dielectric laser accelerators: designs, experiments, and applications,” Reviews of Accelerator Science and Technology 9, 105–126 (2016).
[Crossref]

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures–theory and simulations,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 234004 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Miao, Y.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Mizrahi, A.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Montazeri, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Musumeci, P.

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

Na, Y. N.

Y. N. Na, R. Siemann, and R. Byer, “Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser,” Physical Review Special Topics-Accelerators and Beams 8, 031301 (2005).
[Crossref]

Naranjo, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
[Crossref] [PubMed]

Ng, C.-K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Niedermayer, U.

U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics analysis of dielectric laser acceleration using a fast 6d tracking scheme,” Physical Review Accelerators and Beams 20, 111302 (2017).
[Crossref]

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff, “Alternating phase focusing for dielectric laser acceleration,” arXiv preprint arXiv:1806.07287 (2018).

Noble, R. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

O’Shea, P. G.

K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
[Crossref]

Ody, A.

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).

Palmer, R. B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Panepucci, R. R.

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Pease, R. F.

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

Peralta, E.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

Peralta, E. A.

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

E. A. Peralta, “Accelerator on a chip: design, fabrication, and demonstration of grating-based dielectric microstructures for laser-driven acceleration,” Ph.D. thesis, Stanford University (2015).

Perry, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

Piot, P.

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

Plettner, T.

T. Plettner, P. Lu, and R. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Physical Review Special Topics-Accelerators and Beams 9, 111301 (2006).
[Crossref]

Pöplau, G.

S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.

Putterman, S.

B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
[Crossref] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Rosenzweig, J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
[Crossref] [PubMed]

Rubenchik, A.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

Ruehl, A.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Sakurai, J. J.

J. J. Sakurai and S. F. Tuan, Modern quantum mechanics (Addison-Wesley Pub. Co., 1994), revised ed.

Sapra, N. V.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Sarveswaran, K.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
[Crossref]

Schachter, L.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Schächter, L.

A. Hanuka and L. Schächter, “Operation regimes of a dielectric laser accelerator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888, 147–152 (2018).
[Crossref]

A. Hanuka and L. Schächter, “Trapping of sub-relativistic particles in laser driven accelerators,” Physics of Plasmas 24, 123116 (2017).
[Crossref]

Schönenberger, N.

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Schwartz, B.

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Sears, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Septier, A. L.

P. M. Lapostolle and A. L. Septier, Linear Accelerators (North Holland Publishing Company, 1970).

Shaw, J. L.

K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
[Crossref]

Shin, W.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” Journal of Computational Physics 231, 3406–3431 (2012).
[Crossref]

Shore, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

Siemann, R.

Y. N. Na, R. Siemann, and R. Byer, “Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser,” Physical Review Special Topics-Accelerators and Beams 8, 031301 (2005).
[Crossref]

R. Siemann, “Energy efficiency of laser driven, structure based accelerators,” Physical Review Special Topics-Accelerators and Beams 7, 061303 (2004).
[Crossref]

Solgaard, O.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5, 687–690 (2018).
[Crossref]

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

Soljacic, M.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

Soong, K.

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

Sozer, E.

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Spencer, J. E.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Physical Review Letters 93, 137404 (2004).
[Crossref] [PubMed]

Stuart, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

Stupakov, G.

K. Bane and G. Stupakov, “Using surface impedance for calculating wakefields in flat geometry,” Physical Review Special Topics-Accelerators and Beams 18, 034401 (2015).
[Crossref]

Stutzki, F.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Swenson, D. A.

D. A. Swenson, “Alternating phase focused linacs,” Part. Accel. 7, 61–67 (1976).

Tan, S.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Tantawi, S.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Travish, G.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Tsai, D.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

Tuan, S. F.

J. J. Sakurai and S. F. Tuan, Modern quantum mechanics (Addison-Wesley Pub. Co., 1994), revised ed.

Tzou, D.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” International Journal of Heat and Mass Transfer 48, 501–509 (2005).
[Crossref]

Valloni, A.

B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
[Crossref] [PubMed]

Van Der Geer, S.

S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.

Van Rienen, U.

S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.

Van Thourhout, D.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Veronis, G.

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

Vuckovic, J.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Walz, D.

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Wang, C.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

Wang, M.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Werner, G. R.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Wolf, S. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Wong, L. J.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

Wootton, K.

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

K. Wootton, J. McNeur, and K. Leedle, “Dielectric laser accelerators: designs, experiments, and applications,” Reviews of Accelerator Science and Technology 9, 105–126 (2016).
[Crossref]

Wootton, K. P.

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

Wu, Z.

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Xiao, L.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Xu, Q.

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
[Crossref] [PubMed]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Reviews of Modern Physics 75, 325 (2003).
[Crossref]

Ye, Y.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Yoder, R. B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

Zhang, W.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Zhao, Z.

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Zheludev, N.

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

AIP Conference Proceedings (1)

K. Soong, R. Byer, E. Colby, R. England, and E. Peralta, “Laser damage threshold measurements of optical materials for direct laser accelerators,” AIP Conference Proceedings 1507, 511–515 (2012).

Applied Surface Science (1)

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Applied Surface Science 197, 839–844 (2002).
[Crossref]

International Journal of Heat and Mass Transfer (1)

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” International Journal of Heat and Mass Transfer 48, 501–509 (2005).
[Crossref]

Journal of Applied Physics (1)

K. L. Jensen, P. G. O’Shea, D. W. Feldman, and J. L. Shaw, “Emittance of a field emission electron source,” Journal of Applied Physics 107, 014903 (2010).
[Crossref]

Journal of Computational Physics (1)

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” Journal of Computational Physics 231, 3406–3431 (2012).
[Crossref]

Journal of Lightwave Technology (1)

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” Journal of Lightwave Technology 27, 4076–4083 (2009).
[Crossref]

Journal of Physics B: Atomic, Molecular and Optical Physics (1)

J. Breuer, J. McNeur, and P. Hommelhoff, “Dielectric laser acceleration of electrons in the vicinity of single and double grating structures–theory and simulations,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 234004 (2014).
[Crossref]

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena (1)

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1711–1716 (2004).
[Crossref]

Nature (2)

E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Nature Photonics (2)

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nature Photonics 10, 46 (2016).
[Crossref]

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated cherenkov radiation emitter eliminating the electron velocity threshold,” Nature Photonics 11, 289–292 (2017).
[Crossref]

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (3)

M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. Harris, R. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-relativistic electrons by few-cycle laser pulses,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 84–86 (2017).
[Crossref]

A. Hanuka and L. Schächter, “Operation regimes of a dielectric laser accelerator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888, 147–152 (2018).
[Crossref]

A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, and K. Wootton, “Flat electron beam sources for dla accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 865, 75–83 (2017).
[Crossref]

Optica (1)

Optics Express (2)

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. Harris, R. Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface,” Optics Express 25, 19195–19204 (2017).
[Crossref] [PubMed]

T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for computationally efficient design of dielectric laser accelerator structures,” Optics Express 25, 15414–15427 (2017).
[Crossref] [PubMed]

Optics Letters (4)

K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, and R. J. England, “Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses,” Optics Letters 41, 2696–2699 (2016).
[Crossref] [PubMed]

K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures,” Optics Letters 40, 4344–4347 (2015).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters 29, 1626–1628 (2004).
[Crossref] [PubMed]

Part. Accel. (1)

D. A. Swenson, “Alternating phase focused linacs,” Part. Accel. 7, 61–67 (1976).

Physical Review Accelerators and Beams (2)

F. Lemery, K. Floettmann, P. Piot, F. Kärtner, and R. Aßmann, “Synchronous acceleration with tapered dielectric-lined waveguides,” Physical Review Accelerators and Beams 21, 051302 (2018).
[Crossref]

U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics analysis of dielectric laser acceleration using a fast 6d tracking scheme,” Physical Review Accelerators and Beams 20, 111302 (2017).
[Crossref]

Physical Review Applied (1)

T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, and S. Fan, “On-chip laser-power delivery system for dielectric laser accelerators,” Physical Review Applied 9, 054017 (2018).
[Crossref]

Physical Review Letters (5)

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters 74, 2248 (1995).
[Crossref] [PubMed]

B. Naranjo, A. Valloni, S. Putterman, and J. Rosenzweig, “Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics,” Physical Review Letters 109, 164803 (2012).
[Crossref] [PubMed]

G. Adamo, K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. de Abajo, and N. Zheludev, “Light well: a tunable free-electron light source on a chip,” Physical Review Letters 103, 113901 (2009).
[Crossref] [PubMed]

J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Physical Review Letters 111, 134803 (2013).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Physical Review Letters 93, 137404 (2004).
[Crossref] [PubMed]

Physical Review Special Topics-Accelerators and Beams (5)

R. Siemann, “Energy efficiency of laser driven, structure based accelerators,” Physical Review Special Topics-Accelerators and Beams 7, 061303 (2004).
[Crossref]

K. Bane and G. Stupakov, “Using surface impedance for calculating wakefields in flat geometry,” Physical Review Special Topics-Accelerators and Beams 18, 034401 (2015).
[Crossref]

Y. N. Na, R. Siemann, and R. Byer, “Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser,” Physical Review Special Topics-Accelerators and Beams 8, 031301 (2005).
[Crossref]

T. Plettner, P. Lu, and R. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Physical Review Special Topics-Accelerators and Beams 9, 111301 (2006).
[Crossref]

B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Physical Review Special Topics-Accelerators and Beams 11, 011301 (2008).
[Crossref]

Physics of Plasmas (1)

A. Hanuka and L. Schächter, “Trapping of sub-relativistic particles in laser driven accelerators,” Physics of Plasmas 24, 123116 (2017).
[Crossref]

Reviews of Accelerator Science and Technology (1)

K. Wootton, J. McNeur, and K. Leedle, “Dielectric laser accelerators: designs, experiments, and applications,” Reviews of Accelerator Science and Technology 9, 105–126 (2016).
[Crossref]

Reviews of Modern Physics (2)

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics 86, 1337 (2014).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Reviews of Modern Physics 75, 325 (2003).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Other (7)

J. J. Sakurai and S. F. Tuan, Modern quantum mechanics (Addison-Wesley Pub. Co., 1994), revised ed.

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff, “Alternating phase focusing for dielectric laser acceleration,” arXiv preprint arXiv:1806.07287 (2018).

S. Van Der Geer, O. Luiten, M. De Loos, G. Pöplau, and U. Van Rienen, “3D space-charge model for GPT simulations of high brightness electron bunches,” (2005), vol. 175 of Institute of Physics Conference Series, pp. 101–110.

H. Deng, J. Jiang, Y. Miao, K. J. Leedle, H. Li, O. Solgaard, R. L. Byer, and J. S. Harris, “Design of racetrack ring resonator based dielectric laser accelerators,” arXiv preprint arXiv:1701.08945 (2017).

P. M. Lapostolle and A. L. Septier, Linear Accelerators (North Holland Publishing Company, 1970).

E. A. Peralta, “Accelerator on a chip: design, fabrication, and demonstration of grating-based dielectric microstructures for laser-driven acceleration,” Ph.D. thesis, Stanford University (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of the tapered slot waveguide accelerator. Free space incident light is coupled into the guided wave through grating couplers. The two otherwise identical rectangular waveguides have different total lengths to accumulate a π phase difference. And they are bent and merged to form the slot waveguide. The slot waveguide width changes gradually in a certain distance before the two rectangular waveguides bend outwards and are adiabatically tapered to couple light out. The micro-bunched electron beam is propagating along the center of the slot, as indicated by the dashed line, in the same direction as the guided wave. Although the electrons may experience the electric field when traveling between two grating couplers, the net effect is negligible as the field and electron bunch are not synchronized.
Fig. 2
Fig. 2 Dispersion relation of a slot waveguide. (a) shows the dispersion relations of the guided modes supported by a slot waveguide made of silicon core on silica substrate with geometric parameters a = 0.59 µm, b = 0.22 µm, d = 0.2 µm, and refractive indices nSi = 3.45 and n SO 2 = 1.44 [21]. The blue and orange curve represent the fundamental and acceleration mode, respectively. The green and red curve represent higher order modes. The dashed line represents the chosen central frequency, ω = 2π/2µm. The gray region represents radiative modes. The transverse fields Ex, Ey and longitudinal field Ez are respectively shown in (b), (c), (d) for the acceleration mode, and in (e), (f), (g) for the fundamental mode. Each field component is plotted at a phase such that its amplitude is maximized. The phases of maximal amplitudes for the longitudinal and transverse fields differ by π2. The dispersion relations and fields are solved using numerical eigenmode analysis [22].
Fig. 3
Fig. 3 Phase velocity, group velocity and power normalized longitudinal electric field as functions of width of the slot waveguide. The other parameters of the slot waveguide with silicon core and silica substrate are b = 0.22 µm, d = 0.2 µm, and working wavelength λ0 = 2 µm. The phase velocity and group velocity of the acceleration mode supported by a uniform slot waveguide as a function of width are shown in (a), while the power normalized longitudinal electric field ( η = | E z | / P ) as a function of width is shown in (b).
Fig. 4
Fig. 4 Design of a tapered slot waveguide accelerator with parameters listed in Table 1. (a) shows the width of the slot waveguide which changes gradually along z direction. The velocity of the resonant particle along its trajectory is shown by the solid red curve in (b). The dashed black curve in (b) represents the phase velocity of the acceleration mode. The energy gain for electrons with different initial energies and different initial phases is shown in (c). The ‘+’ indicates the initial conditions of the resonant particle. For comparison, the same analysis is conducted for a non-tapered slot waveguide, and the results are presented in (d)–(f).
Fig. 5
Fig. 5 Plots showing (a) the longitudinal distribution from particle tracking at the exit of the DLA; (b) overlay with the Hamiltonian phase space contours corresponding to the boxed region in part (a), showing that the highest energy electrons lie inside the Hamoltonian separatrix (red curve); (c) resulting energy distribution with a distinct peak of captured electrons at the target energy of 90 keV and the initial particle energy Ek,0 = 80 keV marked by the vertical dashed line.
Fig. 6
Fig. 6 Plots showing (a) normalized transverse emittance for a 100 attosecond bunched beam containing 470 electrons and (b) transmitted fraction as a function of external focusing field K.
Fig. 7
Fig. 7 Tolerance analysis. (a), (b) and (c) show the energy change of the resonant particle with variation in the input power, waveguide width, and central wavelength of laser pulse, respectively.
Fig. 8
Fig. 8 Damage factor as a function of phase velocity for slot waveguides with different thicknesses or slot widths. vp is the phase velocity of the accelerating mode. The solid and dashed curves respectively represent the damage factor for slot waveguides with thickness (.) 0.22 and 0.26 µm. The red, orange, and blue curves show the damage factor for slot waveguides with slot width (.) 0.1, 0.2 and 0.3 µm respectively. For each thickness and slot width, the waveguide width is changed to meet the phase velocity. The ’+’ represents the damage factor for parameters used in Fig. 2.

Tables (1)

Tables Icon

Table 1 Parameters in the design of a tapered slot waveguide accelerator for 80 keV electrons.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E z ( t , z = 0 ) = η ( a ( 0 ) ) P A ( t ) cos ( ω 0 t + ϕ 0 ) ,
E z ( t , z ) = η ( a ( z ) ) P A ( t 0 z 1 v g ( z ) d z ) cos ( ω 0 t 0 z k ( ω 0 ; z ) d z + ϕ 0 )
t ( z ) = t 0 + 0 z 1 v e ( z ) d z ,
ϕ s = ω 0 t 0 + ϕ 0 .
E z ( z ) = η ( a ( z ) ) P A ( t 0 + z v e ( 0 ) z v g ( 0 ) ) cos ( ϕ s ) .
e E z ( z ) = d E k d z = d E k d v e d v e d a d a d z ,
d a d z = e m v p ( a ) ( 1 v p 2 ( a ) c 2 ) 3 2 ( d v p ( a ) d a ) 1 η ( a ) P A ( t 0 + z v e ( 0 ) z v g ( 0 ) ) cos ( ϕ s ) .

Metrics