Abstract

We demonstrate a glass microcapillary fiber as an optofluidic platform for surface enhanced Raman spectroscopy (SERS), the inner walls of which are coated with a graphene oxide (GO)/gold nanorod (AuNR) nanocomposite. A simple thermal method is used for the coating, allowing for the continuous deposition of the nanocomposite without surface functionalization. We show that the AuNRs can be directly and nondestructively identified on the GO inside the capillaries via identification of the Au-Br SERS peak, as Br- ions from the AuNR synthesis remain on their surface. The coated microcapillary platform is, then, used as a stable SERS substrate for the detection of Rhodamine 6G (R6G) and Rhodamine 640 (RH640) at concentrations down to 10−7 and 10−9 M, respectively. As the required sample volumes are as low as a few hundred nanoliters, down to ~75 femtograms of analyte can be detected. The fiber also allows for the detection of the molecules at acquisition times as low as 0.05 s, indicating the platform’s suitability for real-time sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
SERS-based detection in an optofluidic ring resonator platform

Ian. M. White, John Gohring, and Xudong Fan
Opt. Express 15(25) 17433-17442 (2007)

Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering

Xuan Yang, Nazar Ileri, Cindy C. Larson, Thomas C. Carlson, Jerald A. Britten, Allan S. P. Chang, Claire Gu, and Tiziana C. Bond
Opt. Express 20(22) 24819-24826 (2012)

Surface regeneration and signal increase in surface-enhanced Raman scattering substrates

Mikella E. Farrell, Pietro Strobbia, Paul M. Pellegrino, and Brian Cullum
Appl. Opt. 56(3) B198-B213 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
    [Crossref]
  2. L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17(11), 114002 (2015).
    [Crossref]
  3. Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
    [Crossref]
  4. C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
    [Crossref] [PubMed]
  5. Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
    [Crossref] [PubMed]
  6. A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
    [Crossref] [PubMed]
  7. A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
    [Crossref] [PubMed]
  8. B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
    [Crossref] [PubMed]
  9. W. Wang and B. Gu, “New surface-enhanced Raman spectroscopy substrates via self-assembly of silver nanoparticles for perchlorate detection in water,” Appl. Spectrosc. 59(12), 1509–1515 (2005).
    [Crossref] [PubMed]
  10. B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
    [Crossref] [PubMed]
  11. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
    [Crossref] [PubMed]
  12. D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
    [Crossref]
  13. J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
    [Crossref] [PubMed]
  14. S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
    [Crossref] [PubMed]
  15. J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
    [Crossref] [PubMed]
  16. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  17. Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
    [Crossref]
  18. S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
    [Crossref] [PubMed]
  19. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
    [Crossref] [PubMed]
  20. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
    [Crossref] [PubMed]
  21. W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
    [Crossref] [PubMed]
  22. S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
    [Crossref] [PubMed]
  23. S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
    [Crossref] [PubMed]
  24. S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
    [Crossref] [PubMed]
  25. S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
    [Crossref]
  26. R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
    [Crossref]
  27. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
    [Crossref] [PubMed]
  28. S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
    [Crossref] [PubMed]
  29. P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
    [Crossref] [PubMed]
  30. A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
    [Crossref]
  31. C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
    [Crossref] [PubMed]
  32. P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
    [Crossref]
  33. P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
    [Crossref]
  34. H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
    [Crossref] [PubMed]
  35. C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
    [Crossref]
  36. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
    [Crossref]
  37. L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
    [Crossref] [PubMed]
  38. B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
    [Crossref]
  39. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  40. Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
    [Crossref] [PubMed]
  41. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
    [Crossref]
  42. Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
    [Crossref] [PubMed]
  43. M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
    [Crossref] [PubMed]
  44. J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
    [Crossref] [PubMed]
  45. Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
    [Crossref] [PubMed]
  46. N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
    [Crossref] [PubMed]
  47. Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
    [Crossref] [PubMed]
  48. R. M. Gerosa, F. G. Suarez, S. H. Domingues, and C. J. S. de Matos, “One-step deposition and in-situ reduction of graphene oxide in glass microcapillaries and application to photonics,” arXiv:1708.06954 (2017).
  49. I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
    [Crossref] [PubMed]
  50. B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  51. N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
    [Crossref] [PubMed]
  52. J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
    [Crossref]
  53. T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
    [Crossref] [PubMed]
  54. L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
    [Crossref] [PubMed]
  55. H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
    [Crossref] [PubMed]
  56. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
    [Crossref]
  57. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  58. I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
    [Crossref] [PubMed]
  59. J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
    [Crossref] [PubMed]
  60. R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
    [Crossref] [PubMed]
  61. S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
    [Crossref] [PubMed]

2017 (4)

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
[Crossref]

M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref] [PubMed]

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

2016 (10)

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
[Crossref] [PubMed]

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]

2015 (11)

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref] [PubMed]

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17(11), 114002 (2015).
[Crossref]

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]

J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

2013 (4)

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref] [PubMed]

N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref] [PubMed]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

2012 (7)

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref] [PubMed]

B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref] [PubMed]

2011 (3)

S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref] [PubMed]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

2010 (2)

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

2009 (4)

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

2008 (1)

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

2007 (3)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2006 (2)

P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
[Crossref] [PubMed]

2005 (3)

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
[Crossref] [PubMed]

W. Wang and B. Gu, “New surface-enhanced Raman spectroscopy substrates via self-assembly of silver nanoparticles for perchlorate detection in water,” Appl. Spectrosc. 59(12), 1509–1515 (2005).
[Crossref] [PubMed]

2003 (2)

C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[Crossref]

B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

1986 (1)

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

1984 (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Abadeer, N. S.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Acharya, S.

S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref] [PubMed]

Alfranca, G.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Alves, D. C. B.

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

Amezcua-Correa, A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

An, H.

J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]

Andersson, P. O.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

Aphale, A. N.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Baumberg, J. J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Behera, G.

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

Bell, P. M.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Boisen, A.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

Bratashov, D. N.

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

Burrows, N. D.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Cai, H.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Caires, A. J.

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

Camden, J. P.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

Carvalho, B. R.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Carvalho, I. C. S.

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

Chang, L.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

Chen, C.-H.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Chen, C.-M.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Chen, D.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Chen, G. N.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Chen, H. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Chen, S.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

Chen, X.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Chen, Y.-F.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Cheng, S.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Chhowalla, M.

P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref] [PubMed]

Chou, H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Chuang, C.-H.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Costa, G. K. B.

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

Cruz-Silva, R.

R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]

Cui, D.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

de la Fuente, J. M.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

de Matos, C. J. S.

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

DeGrandpre, M. D.

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]

Dennison, J. M.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Dieringer, J. A.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

Ding, L.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

Domingues, S. H.

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Dos Santos, M. C.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Dresselhaus, M. S.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Du, H.

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Du, Y.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Duan, J.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

Dutta, S.

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

Elías, A. L.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

El-sayed, M. A.

B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Endo, M.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]

Erickson, D.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Etcheverry, S.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Fabris, L.

L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17(11), 114002 (2015).
[Crossref]

Fainman, Y.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Fan, J.

J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref] [PubMed]

Fan, W.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

Fang, W.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

Fang, Y.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Fantini, C.

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

Faridi, A.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Fathima, H.

M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref] [PubMed]

Feng, S.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Ferlauto, A. S.

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

Finlayson, C. E.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Fontana, J.

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

Freeman, L. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Fu, R.

J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref] [PubMed]

Fujisawa, K.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Gao, C.

N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref] [PubMed]

George Thomas, K.

M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref] [PubMed]

Gonzalez, W. G.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Grasseschi, D.

D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
[Crossref]

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

Grzincic, E. M.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Gu, B.

Gu, C.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Gu, Q.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Gu, Z.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Guo, X.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

Hakonen, A.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

Han, Y.

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Hayazawa, N.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Hayes, J. R.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Haynes, C.

C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[Crossref]

Hemley, R. J.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Hildebrandt, P.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Hinman, J. G.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Hou, H.

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

Hou, J. G.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Howdle, S. M.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Hu, X.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Huang, S.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

Inouye, Y.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Jacob, L. M.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Jain, A.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Jensen, L.

J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref] [PubMed]

S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref] [PubMed]

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
[Crossref] [PubMed]

Jiang, L.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Jin, Y.

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

Juhlin, L.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

Käll, M.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

Kang, Y.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

Kawata, S.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Keller, B. K.

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]

Khanadeev, V. A.

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

Kholmanov, I. N.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Kim, J. Y.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Kleinman, S. L.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

Ko, H.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Kong, J.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Kuhar, N.

S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref] [PubMed]

Kumar, T.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Ladeira, L. O.

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

Laurell, F.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Leblanc, R. M.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Lee, K.-B.

P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref] [PubMed]

Lee, Y. H.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

Lei, Y.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Li, C.

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

Li, H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Li, J.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]

N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref] [PubMed]

Li, Q.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Li, S.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Li, X.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Liang, L.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

Lin, W.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Ling, X.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Ling, X. Y.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

Liu, J.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Liu, T.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

Liu, Z.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

Lu, C. H.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Lu, L.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Luo, Y.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Lv, R.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Macwan, I. G.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
[Crossref] [PubMed]

Mancuso, M.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Mandal, P.

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

Mao, H. K.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Margulis, W.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Masiello, D. J.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

Meixner, A. J.

T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
[Crossref] [PubMed]

Meunier, V.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Miksovska, J.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Mondal, S.

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

Monro, T. M.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

Moore, J. E.

J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref] [PubMed]

Morton, S. M.

J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref] [PubMed]

S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref] [PubMed]

Murphy, C. J.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Mysen, B. O.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Narayanan, R.

B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref] [PubMed]

Negishi, Y.

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Oncescu, V.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Oo, M. K.

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Pal, T.

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

Palmer, C. P.

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]

Pan, F.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Pan, M.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Pan, N.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Pan, Y.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

Panfilova, E. V.

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

Pang, L.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Parmar, K. P. S.

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

Patra, P. K.

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

Peacock, A. C.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Pedireddy, S.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

Pence, I.

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
[Crossref] [PubMed]

Perea-López, N.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Pimenta, M. A.

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Piner, R.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Pradhan, M.

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

Premasiri, R.

B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref] [PubMed]

Pristinski, D.

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Qi, J.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

Qi, M.

J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref] [PubMed]

Qu, L.

J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref] [PubMed]

Qu, Q.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Qu, Y.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Ramachandraiah, H.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Ray, C.

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

Rindzevicius, T.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Ruan, Y.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

Ruoff, R. S.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Russell, P. S. J.

Russom, A.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Sarkar, S.

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

Saute, B.

B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref] [PubMed]

Sazio, P. J. A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Schatz, G. C.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
[Crossref] [PubMed]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Schmidt, M. S.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

Shah, S.

P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref] [PubMed]

Shanthil, M.

M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Sharma, S.

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

Shen, Y.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Sil, S.

S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref] [PubMed]

Silverstein, D. W.

S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref] [PubMed]

Singamaneni, S.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Song, C. Y.

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Song, Y.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

Stenbæk Schmidt, M.

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

Stockburger, M.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Sukhishvili, S.

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Sun, Y. Z.

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Svedendahl, M.

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

Tan, C.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Tan, S.

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Terrones, M.

R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Toma, H. E.

D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
[Crossref]

Tsukruk, V. V.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Umapathy, S.

S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref] [PubMed]

Van Duyne, R.

C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

Vartanian, A. M.

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Vianna, P. G.

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

Vosgröne, T.

T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
[Crossref] [PubMed]

Wang, C.

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

Wang, K.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Wang, L.-H.

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Wang, P.

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

Wang, W.

Wang, X.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

Watanabe, H.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Wen, Y.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Wu, T.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

Wu, Y.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Wustholz, K. L.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

Xie, L.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Xie, Y.

N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref] [PubMed]

Xu, C.

C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

Xu, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Xu, L.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Xu, Q.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Yang, B. Y.

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Yang, H.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Yang, H. H.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Yang, J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Yang, Y. J.

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Ye, N.

N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref] [PubMed]

Yin, P. T.

P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref] [PubMed]

Ying, Y.

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Yu, X.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Zarbin, A. J. G.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Zhang, C.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Zhang, H.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Zhang, J.

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Zhang, Q.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

Zhang, W.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Zhang, Z.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Zhao, J.

J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]

Zhao, Y.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Zhao, Y.-P.

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

Zhi, X.

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

Zhu, C. L.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Zhu, J.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]

Zhu, Y.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

Ziegler, L.

B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (5)

B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref] [PubMed]

S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref] [PubMed]

S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref] [PubMed]

H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref] [PubMed]

M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref] [PubMed]

ACS Nano (3)

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]

Adv. Funct. Mater. (1)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Adv. Mater. (1)

Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref] [PubMed]

A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]

Carbon NY (1)

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Chem. Rev. (2)

P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref] [PubMed]

S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
[Crossref] [PubMed]

ChemPhysChem (1)

T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]

J. Chromatogr. A (1)

J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]

J. Opt. (1)

L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17(11), 114002 (2015).
[Crossref]

J. Phys. Chem. (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

J. Phys. Chem. A (1)

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[Crossref]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref] [PubMed]

J. Sep. Sci. (1)

N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref] [PubMed]

Lab Chip (1)

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Langmuir (1)

N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref] [PubMed]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Mikrochim. Acta (1)

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]

Nano Lett. (2)

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref] [PubMed]

Nanoscale (4)

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref] [PubMed]

C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref] [PubMed]

A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref] [PubMed]

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Nanotechnol. Rev. (1)

R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]

Nat. Photonics (1)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Phys. Rev. Lett. (1)

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

RSC Advances (1)

A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]

Sci. Adv. (1)

S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref] [PubMed]

Sci. Rep. (3)

S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref] [PubMed]

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]

Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]

Small (2)

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

Other (1)

R. M. Gerosa, F. G. Suarez, S. H. Domingues, and C. J. S. de Matos, “One-step deposition and in-situ reduction of graphene oxide in glass microcapillaries and application to photonics,” arXiv:1708.06954 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustration of the coating of the capillary fiber with a GO/AuNR nanocomposite.
Fig. 2
Fig. 2 Characterization of the GO/AuNR’s coating to the inner walls of a capillary fiber. (a) Optical microscope image of the side of the fiber; red square represents the area analyzed by Raman hyperspectral imaging. (b)-(d) Raman intensity images for graphene oxide’s G (b) and D (c) bands and for the AuNRs’ ν(Au-Br) mode (d); normalized intensities are represented by a color scale (color bar on the right of each image; dark blue represents the lowest intensity and yellow the highest intensity in each case). (e) Raman spectrum obtained at the position marked by the red cross in (d); the red asterisk indicates the ν(Au-Br) mode. Raman data obtained with 4.2-mW laser power at 633 nm and with 0.5 s integration times. (f) SEM image of a section of the capillary inner wall, exposed by angle cleaving the fiber; white spots correspond to AuNRs.
Fig. 3
Fig. 3 SERS spectra for R6G (a)-(b) and RH640 (d)-(e) in the nanocomposite-coated capillary (vertically displaced for clarity). (a) R6G concentration of 10−5 M and integration times of 0.5 s (blue) and 0.05 s (black). Laser power of 185 µW. (b) R6G at concentrations of 10−5 M (blue), 10−6 M (red) and 10−7 M (black). Laser powers of 185 µW (blue) and 1.77 mW (red/black). Integration time of 0.5 s. (c) SERS spectra time series for R6G. Laser power of 185 µW and 0.5 s integration time. (d) RH640 concentration of 10−6 M and integration times of 0.5 s (blue) and 0.05 s (black). Laser power of 105 µW. (e) RH640 at concentrations of 10−6 M (blue), 10−8 M (red) and 10−9 M (black). Laser powers of 105 µW (blue) and 1.85 mW (red/black). Integration time of 0.5 s. (f) SERS spectra time series for RH640. Laser power of 105 µW and 0.5 s integration time.
Fig. 4
Fig. 4 (a) Optical microscope image of the capillary fiber cross section. The marked points refer to the positions where the spectra shown in (b) were taken. (b) Spectra obtained at the points marked with the same color in (a). Incident powers: 105 µW (red); 975 µW (black and blue). (c) Output intensity profile when a 633-nm laser was launched at the silica wall/capillary hole interface (power: 23.7 µW; capillary length: 1.8 cm).

Metrics