Abstract

We demonstrate non-contact temperature measurement with one tenth of a kelvin precision at distances of several meters using omnidirectional laser emission from dye-doped cholesteric liquid crystal droplets freely floating in a fluid medium. Upon the excitation with a pulsed laser the liquid crystal droplet emits laser light due to 3D Bragg lasing in all directions. The spectral position of the lasing is highly dependent on temperature, which enables remote and contact-less temperature measurement with high precision. Both laser excitation and collection of light emitted by microlasers is performed through a wide telescope aperture optics at a distance of up to several meters. The optical excitation volume, where the droplets are excited and emitting the laser light is of the order of ten cubic millimeters. The measurement is performed with ten second accumulation time, when several droplets pass through the excitation volume due to their motion. The time of measurement could easily be shortened to less than a second by increasing the rate of the excitation laser. Since the method is based solely on measuring the spectral position of a single and strong laser line, it is quite insensitive to scattering, absorption and background signals, such as autofluorescence. This enables a wide use in science and industry, with a detection range exceeding tens of meters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lasing properties of polymerized chiral nematic Bragg onion microlasers

Matjaž Humar, Fumito Araoka, Hideo Takezoe, and Igor Muševič
Opt. Express 24(17) 19237-19244 (2016)

3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 18(26) 26995-27003 (2010)

Electrically controllable multicolor cholesteric laser

Lotfi Saadaoui, Gia Petriashvili, M. P. De Santo, Ridha Hamdi, Tahar Othman, and Riccardo Barberi
Opt. Express 23(17) 22922-22927 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. de Gennes and J. Prost, The physics of liquid crystals (Oxford University, 1993).
  2. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676 (2010).
    [Crossref]
  3. V. I. Kopp, B. Fan, H. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]
  4. B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
    [Crossref]
  5. E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
    [Crossref]
  6. S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
    [Crossref]
  7. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
    [Crossref]
  8. F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
    [Crossref]
  9. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
    [Crossref]
  10. I. Muševic and M. Humar, “Tunable liquid crystal optical microcavities,” in “Emerging Liquid Crystal Technologies VI,”, vol. 7955 (International Society for Optics and Photonics, 2011), vol. 7955, p. 795509.
    [Crossref]
  11. I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41, 418–429 (2014).
    [Crossref]
  12. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
    [Crossref]
  13. R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
    [Crossref] [PubMed]
  14. Y.-D. Jung, M. Khan, and S.-Y. Park, “Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics,” J. Mater. Chem. B 2, 4922–4928 (2014).
    [Crossref]
  15. M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43, 1937–1950 (2016).
    [Crossref]
  16. H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8, 26407–26417 (2016).
    [Crossref] [PubMed]
  17. S. Munir and S.-Y. Park, “Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing,” Sens. Actuators, B 257, 579–585 (2018).
    [Crossref]
  18. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
    [Crossref] [PubMed]
  19. I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
    [Crossref] [PubMed]
  20. T. Bera, J. Deng, and J. Fang, “Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets,” J. Phys. Chem. B 118, 4970–4975 (2014).
    [Crossref] [PubMed]
  21. M. Khan and S.-Y. Park, “Specific detection of avidin–biotin binding using liquid crystal droplets,” Colloids Surf. B 127, 241–246 (2015).
    [Crossref]
  22. U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
    [Crossref]
  23. P. Childs, J. Greenwood, and C. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
    [Crossref]
  24. X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).
    [Crossref] [PubMed]
  25. F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
    [Crossref] [PubMed]
  26. R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43, 1479–1482 (2018).
    [Crossref] [PubMed]
  27. E. P. Schartner and T. M. Monro, “Fibre tip sensors for localised temperature sensing based on rare earth-doped glass coatings,” Sensors. 14, 21693–21701 (2014).
    [Crossref] [PubMed]
  28. M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
    [Crossref]
  29. P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).
  30. V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
    [Crossref] [PubMed]
  31. S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
    [Crossref]
  32. M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
    [Crossref]
  33. P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
    [Crossref]

2018 (2)

S. Munir and S.-Y. Park, “Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing,” Sens. Actuators, B 257, 579–585 (2018).
[Crossref]

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43, 1479–1482 (2018).
[Crossref] [PubMed]

2017 (1)

M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
[Crossref]

2016 (3)

M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43, 1937–1950 (2016).
[Crossref]

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8, 26407–26417 (2016).
[Crossref] [PubMed]

2015 (1)

M. Khan and S.-Y. Park, “Specific detection of avidin–biotin binding using liquid crystal droplets,” Colloids Surf. B 127, 241–246 (2015).
[Crossref]

2014 (4)

T. Bera, J. Deng, and J. Fang, “Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets,” J. Phys. Chem. B 118, 4970–4975 (2014).
[Crossref] [PubMed]

I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41, 418–429 (2014).
[Crossref]

E. P. Schartner and T. M. Monro, “Fibre tip sensors for localised temperature sensing based on rare earth-doped glass coatings,” Sensors. 14, 21693–21701 (2014).
[Crossref] [PubMed]

Y.-D. Jung, M. Khan, and S.-Y. Park, “Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics,” J. Mater. Chem. B 2, 4922–4928 (2014).
[Crossref]

2013 (3)

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).
[Crossref] [PubMed]

2012 (2)

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
[Crossref] [PubMed]

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

2011 (2)

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
[Crossref] [PubMed]

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

2010 (3)

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676 (2010).
[Crossref]

2009 (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
[Crossref]

2007 (2)

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).

2006 (1)

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

2005 (1)

S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

2003 (1)

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

2001 (2)

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
[Crossref]

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

2000 (1)

P. Childs, J. Greenwood, and C. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

1998 (1)

Abbasi, R.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

Abbott, N. L.

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Alvarez, E.

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

Araoka, F.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

Arts, R.

M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Bera, T.

T. Bera, J. Deng, and J. Fang, “Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets,” J. Phys. Chem. B 118, 4970–4975 (2014).
[Crossref] [PubMed]

Bertics, P. J.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Bobrovsky, A.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
[Crossref] [PubMed]

Cao, W.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Carlton, R. J.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

Caruso, F.

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

Chiappetta, D.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Childs, P.

P. Childs, J. Greenwood, and C. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676 (2010).
[Crossref]

S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

de Gennes, P.

P. de Gennes and J. Prost, The physics of liquid crystals (Oxford University, 1993).

De Pablo, J. J.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Deng, J.

T. Bera, J. Deng, and J. Fang, “Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets,” J. Phys. Chem. B 118, 4970–4975 (2014).
[Crossref] [PubMed]

Dobravec, A.

M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
[Crossref]

Fan, B.

Fang, J.

T. Bera, J. Deng, and J. Fang, “Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets,” J. Phys. Chem. B 118, 4970–4975 (2014).
[Crossref] [PubMed]

Ford, A.

S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Garcia Solee, J.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Genack, A. Z.

Green, M. M.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Greenwood, J.

P. Childs, J. Greenwood, and C. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Ha, N. Y.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

He, M.

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

Humar, M.

M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
[Crossref]

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43, 1937–1950 (2016).
[Crossref]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
[Crossref]

I. Muševic and M. Humar, “Tunable liquid crystal optical microcavities,” in “Emerging Liquid Crystal Technologies VI,”, vol. 7955 (International Society for Optics and Photonics, 2011), vol. 7955, p. 795509.
[Crossref]

Hunter, J. T.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

Ishikawa, K.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

Jaque, D.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Jeong, S. M.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Jung, Y.-D.

Y.-D. Jung, M. Khan, and S.-Y. Park, “Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics,” J. Mater. Chem. B 2, 4922–4928 (2014).
[Crossref]

Kado, S.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Khan, M.

M. Khan and S.-Y. Park, “Specific detection of avidin–biotin binding using liquid crystal droplets,” Colloids Surf. B 127, 241–246 (2015).
[Crossref]

Y.-D. Jung, M. Khan, and S.-Y. Park, “Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics,” J. Mater. Chem. B 2, 4922–4928 (2014).
[Crossref]

Kimura, K.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Kopp, V. I.

Lee, H.-G.

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8, 26407–26417 (2016).
[Crossref] [PubMed]

Lin, I.-H.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Long, C.

P. Childs, J. Greenwood, and C. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Lynn, D. M.

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

Manna, U.

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

Martiin Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Meier, R. J.

X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).
[Crossref] [PubMed]

Merkx, M.

M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Miller, D. S.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Moirangthem, M.

M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Monro, T. M.

E. P. Schartner and T. M. Monro, “Fibre tip sensors for localised temperature sensing based on rare earth-doped glass coatings,” Sensors. 14, 21693–21701 (2014).
[Crossref] [PubMed]

Moreira, M.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676 (2010).
[Crossref]

S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Munir, S.

S. Munir and S.-Y. Park, “Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing,” Sens. Actuators, B 257, 579–585 (2018).
[Crossref]

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8, 26407–26417 (2016).
[Crossref] [PubMed]

Munoz, A.

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
[Crossref]

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

Murphy, C. J.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Muševic, I.

I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41, 418–429 (2014).
[Crossref]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
[Crossref]

I. Muševic and M. Humar, “Tunable liquid crystal optical microcavities,” in “Emerging Liquid Crystal Technologies VI,”, vol. 7955 (International Society for Optics and Photonics, 2011), vol. 7955, p. 795509.
[Crossref]

Mushenheim, P. C.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Nakahara, Y.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Nishimura, S.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
[Crossref]

Palffy-Muhoray, P.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
[Crossref]

Park, S.-Y.

S. Munir and S.-Y. Park, “Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing,” Sens. Actuators, B 257, 579–585 (2018).
[Crossref]

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8, 26407–26417 (2016).
[Crossref] [PubMed]

M. Khan and S.-Y. Park, “Specific detection of avidin–biotin binding using liquid crystal droplets,” Colloids Surf. B 127, 241–246 (2015).
[Crossref]

Y.-D. Jung, M. Khan, and S.-Y. Park, “Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics,” J. Mater. Chem. B 2, 4922–4928 (2014).
[Crossref]

Pennetta, R.

Pivnenko, M.

S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Prost, J.

P. de Gennes and J. Prost, The physics of liquid crystals (Oxford University, 1993).

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
[Crossref]

Rivera, P.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).

Russell, P. S. J.

Ryabchun, A.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
[Crossref] [PubMed]

Sanford, R. L.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Sanz-Rodriguez, F.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Schartner, E. P.

E. P. Schartner and T. M. Monro, “Fibre tip sensors for localised temperature sensing based on rare earth-doped glass coatings,” Sensors. 14, 21693–21701 (2014).
[Crossref] [PubMed]

Schenning, A. P.

M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Serak, S.

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

Shibaev, P. V.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Shibaev, V.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
[Crossref] [PubMed]

Shin, K.-C.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

Stroganov, V.

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
[Crossref] [PubMed]

Suzaki, G.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

Swager, T. M.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

Taheri, B.

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
[Crossref]

Takanishi, Y.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

Takeshima, Y.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Takezoe, H.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

Tan, L. N.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

Twieg, R.

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
[Crossref]

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Vithana, H.

Wang, X.-d.

X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).
[Crossref] [PubMed]

Wolfbeis, O. S.

X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).
[Crossref] [PubMed]

Xie, S.

Yun, S. H.

M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
[Crossref]

Zamarron, A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Zayas-Gonzalez, Y. M.

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

Zeltner, R.

Zhao, X.

M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
[Crossref]

Zhu, Z.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8, 26407–26417 (2016).
[Crossref] [PubMed]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martiin Rodriguez, D. Jaque, J. Garcia Solee, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Angew. Chem. Int. Ed. (1)

U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52, 14011–14015 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

Chem. Soc. Rev. (1)

X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).
[Crossref] [PubMed]

Colloids Surf. B (1)

M. Khan and S.-Y. Park, “Specific detection of avidin–biotin binding using liquid crystal droplets,” Colloids Surf. B 127, 241–246 (2015).
[Crossref]

J. Appl. Phys. (2)

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2003).
[Crossref]

S. Morris, A. Ford, M. Pivnenko, and H. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

J. Incl. Phenom. Macrocycl. Chem. (1)

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

J. Mater. Chem. B (1)

Y.-D. Jung, M. Khan, and S.-Y. Park, “Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics,” J. Mater. Chem. B 2, 4922–4928 (2014).
[Crossref]

J. Phys. Chem. B (1)

T. Bera, J. Deng, and J. Fang, “Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets,” J. Phys. Chem. B 118, 4970–4975 (2014).
[Crossref] [PubMed]

Liq. Cryst. (2)

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43, 1937–1950 (2016).
[Crossref]

I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41, 418–429 (2014).
[Crossref]

Liq. Cryst. Rev. (1)

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1, 29–51 (2013).
[Crossref] [PubMed]

Macromol. Rapid Commun. (1)

V. Stroganov, A. Ryabchun, A. Bobrovsky, and V. Shibaev, “A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films,” Macromol. Rapid Commun. 33, 1875–1881 (2012).
[Crossref] [PubMed]

Macromolecules. (1)

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules. 39, 3986–3992 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–1199 (2007).

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (2)

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73–82 (2001).
[Crossref]

E. Alvarez, M. He, A. Munoz, P. Palffy-Muhoray, S. Serak, B. Taheri, and R. Twieg, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 369, 75–82 (2001).
[Crossref]

Nat. Photonics (2)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica. (1)

M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica. 4, 1080–1085 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

P. Childs, J. Greenwood, and C. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Science (1)

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
[Crossref] [PubMed]

Sens. Actuators, B (1)

S. Munir and S.-Y. Park, “Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing,” Sens. Actuators, B 257, 579–585 (2018).
[Crossref]

Sensors. (1)

E. P. Schartner and T. M. Monro, “Fibre tip sensors for localised temperature sensing based on rare earth-doped glass coatings,” Sensors. 14, 21693–21701 (2014).
[Crossref] [PubMed]

Other (2)

P. de Gennes and J. Prost, The physics of liquid crystals (Oxford University, 1993).

I. Muševic and M. Humar, “Tunable liquid crystal optical microcavities,” in “Emerging Liquid Crystal Technologies VI,”, vol. 7955 (International Society for Optics and Photonics, 2011), vol. 7955, p. 795509.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Schematics of the optical setup: Pump laser is a 10 ns, 532 nm laser; F1 - optical fibre of 550 µm core diameter. Telescope tube is taken from a low cost commercial telescope; DM - longpass dichroic mirror; L1 - 50 mm diameter biconvex lens with focal length of 60 mm; L2 - 200 mm diameter plan-convex focusing lens with focal length of 400 mm; Sample stage with magnetic stirrer and temperature sensor is enclosed into a box with windows; LPF - Longpass 550 nm dichroic filter; F2 - a 105 µm core diameter fiber; Andor Shamrock SR-500 spectrometer. b) Picture of the optical setup with beam paths superimposed. c) Picture of the sample. CLC droplets were dispersed in a mixture of gycerol and water inside a glass container (25 mm × 24 mm × 20 mm), and continuously stirred by the magnet (the object dotted in red). The sample is illuminated from the direction illustrated by white arrow. The temperature sensor is circled red. d) Close up of the illuminated region, individual LC droplets are clearly visible due to emission. e) Microscope image of a lasing CLC droplet, showing: (i) 3D lasing from the central orange spot, (ii) the inner green lobes are Bragg WGM lasing modes, (iii) green light from the surface of the droplet presents lasing from the WGMs.
Fig. 2
Fig. 2 a) Schematics of the origin of different kinds of lasing channels that appear in CLC droplets. The radial Bragg lasing is observed from the droplet center marked with red crossed circle. This gives rise to omnidirectional, 3D lasing. If the droplets are big enough, then the ”inner shell”, Bragg WGM lasing is observed, pictured with curved arrows near the center. The surface WGMs are sustained when refractive index of the carrier medium is much lower than both indices of the liquid crystal, pictured by the curved arrow along the surface. b) Time dependence of the 3D omnidirectional Bragg lasing from a number of different CLC droplets in glycerol. c) Typical spectrum, showing all three different kinds of lasing, which was obtained in sample 2 from a single droplet The fluorescence emission spectrum of the pyrromethene dye mixed in the LC mixture is also shown as blue curve, with the intensity scale on the right-hand side. The spectrum was measured under an optical microscope with the same optical filters as in the optical setup with the telescope. Black arrow indicates cut-off wavelength of the optical filters in the telescope system. Red arrow indicates the position of the Bragg lasing line. The inset shows the onset of Bragg lasing when the excitation pulses exceed ∼100 µJ energy per pulse. d) Close-up of the Bragg lasing line averaged from 200 accumulated spectra taken from sample 1. The red line is a Gaussian fit, from which temperature dependence was obtained. The inset shows the full spectrum.
Fig. 3
Fig. 3 The analysis of the excitation volume, from which the 3D omnidirectional lasing could be obtained: a) Beam profile at the focal point. b) Intensity of Bragg lasing at pump energy of 250 µJ from a single droplet in glycerol as it was moved along the optical axis.
Fig. 4
Fig. 4 a) Lasing spectra collected by the telescope at a distance of 1 meter from the sample. 150 spectra were measured at different temperatures, each spectra was accumulated from 200 laser pulses, captured at 20 Hz. b) Fit of the temperature dependence of Bragg lasing wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B r a g g l a s i n g = A T + T ,

Metrics