Abstract

Plasmonics of two-dimensional materials have attracted increasing attention in the past few years. It provides a platform for strong light-matter interactions and enables a variety of novel applications in the infrared and terahertz ranges. In this paper, we study the plasmonic properties of a graphene-black phosphorus (G-BP) bilayer. It exhibits both strong and highly anisotropic plasmonic responses that performs beyond individual graphene and black phosphorus films. Polarization dependent, anisotropic perfect absorption can be realized in this type of two-dimensional plasmonic nanostructures with moderate doping levels. This type of hybrid architecture opens a new door for high performance two-dimensional material plasmonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers

Yijun Cai, Kai-Da Xu, Naixing Feng, Rongrong Guo, Haijun Lin, and Jinfeng Zhu
Opt. Express 27(3) 3101-3112 (2019)

Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons

Jinpeng Nong, Wei Wei, Wei Wang, Guilian Lan, Zhengguo Shang, Juemin Yi, and Linlong Tang
Opt. Express 26(2) 1633-1644 (2018)

Optical properties of black phosphorus

Xiaomu Wang and Shoufeng Lan
Adv. Opt. Photon. 8(4) 618-655 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
    [Crossref]
  2. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics,  6(11), 749–758(2012).
    [Crossref]
  3. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science,  332(6035), 1291–1294(2011).
    [Crossref] [PubMed]
  4. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
    [Crossref] [PubMed]
  5. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
    [Crossref] [PubMed]
  6. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
    [Crossref] [PubMed]
  7. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
    [Crossref] [PubMed]
  8. Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
    [Crossref]
  9. Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
    [Crossref]
  10. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
    [Crossref]
  11. L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
    [Crossref] [PubMed]
  12. M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
    [Crossref] [PubMed]
  13. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
    [Crossref]
  14. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett.,  112(17), 1–5(2014).
    [Crossref]
  15. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
    [Crossref]
  16. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
    [Crossref] [PubMed]
  17. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
    [Crossref] [PubMed]
  18. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express,  23(10), 12823(2015).
    [Crossref] [PubMed]
  19. M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
    [Crossref] [PubMed]
  20. J. Lou, X. Xu, and P. D. Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” ACS Nano,  8(8), 8292–8299(2014).
    [Crossref] [PubMed]
  21. D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
    [Crossref]
  22. Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett.,  109(24), 241902(2016).
    [Crossref]
  23. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
    [Crossref]
  24. D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
    [Crossref]
  25. X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett.,  42(13), 2659–2662(2017).
    [Crossref] [PubMed]
  26. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett.,  16(6), 3457–3462(2016).
    [Crossref] [PubMed]
  27. J. P. Nong, W. Wei, W. Wang, and G. L. Lan, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express,  26(2), 1291–1294(2018).
    [Crossref]
  28. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B,  56(4),281–284(2007).
    [Crossref]
  29. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
    [Crossref] [PubMed]
  30. W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent, 2599944 (1952).
  31. Y. Ra, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves : Theory, Design, and Realizations,” Phys. Rev. Appl.,  3(3), 037001(2015).
    [Crossref]
  32. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express,  25(5), 5206–5216(2017).
    [Crossref] [PubMed]
  33. J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express,  25(18), 22149–22157(2017).
    [Crossref] [PubMed]
  34. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
    [Crossref]
  35. A. H. C. Neto, “The electronic properties of graphene,” Rev. mod. phys.,  81(1), 109 (2009).
    [Crossref]
  36. J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov, “Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects,” ACS Nano,  6(1), 671–676(2012).
    [Crossref]
  37. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
    [Crossref]
  38. Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
    [Crossref] [PubMed]
  39. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
    [Crossref] [PubMed]
  40. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
    [Crossref] [PubMed]
  41. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
    [Crossref]
  42. W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
    [Crossref]
  43. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
    [Crossref] [PubMed]
  44. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
    [Crossref] [PubMed]
  45. Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
    [Crossref]

2018 (2)

J. P. Nong, W. Wei, W. Wang, and G. L. Lan, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express,  26(2), 1291–1294(2018).
[Crossref]

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

2017 (5)

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express,  25(5), 5206–5216(2017).
[Crossref] [PubMed]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett.,  42(13), 2659–2662(2017).
[Crossref] [PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express,  25(18), 22149–22157(2017).
[Crossref] [PubMed]

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
[Crossref]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

2016 (6)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett.,  16(6), 3457–3462(2016).
[Crossref] [PubMed]

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
[Crossref]

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett.,  109(24), 241902(2016).
[Crossref]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

2015 (4)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express,  23(10), 12823(2015).
[Crossref] [PubMed]

Y. Ra, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves : Theory, Design, and Realizations,” Phys. Rev. Appl.,  3(3), 037001(2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

2014 (10)

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett.,  112(17), 1–5(2014).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

J. Lou, X. Xu, and P. D. Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” ACS Nano,  8(8), 8292–8299(2014).
[Crossref] [PubMed]

2013 (3)

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

2012 (7)

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics,  6(11), 749–758(2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov, “Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects,” ACS Nano,  6(1), 671–676(2012).
[Crossref]

2011 (3)

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science,  332(6035), 1291–1294(2011).
[Crossref] [PubMed]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
[Crossref]

2009 (1)

A. H. C. Neto, “The electronic properties of graphene,” Rev. mod. phys.,  81(1), 109 (2009).
[Crossref]

2007 (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B,  56(4),281–284(2007).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Abajo, F. J. G. D.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Alù, A.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
[Crossref]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Atwater, H. A.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

Avouris, P.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett.,  16(6), 3457–3462(2016).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Bao, Q.

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Bao, Z. W.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett.,  109(24), 241902(2016).
[Crossref]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Blanter, S. I.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
[Crossref]

Brar, V. W.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Buscema, M.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Carvalho, A.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett.,  112(17), 1–5(2014).
[Crossref]

Castellanos-Gomez, A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Castro Neto, A. H.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett.,  112(17), 1–5(2014).
[Crossref]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Chen, C.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Chen, S.

Chen, X.

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett.,  42(13), 2659–2662(2017).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Chen, Y.

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Correas-Serrano, D.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
[Crossref]

Ding, J.

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Duan, X.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science,  332(6035), 1291–1294(2011).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B,  56(4),281–284(2007).
[Crossref]

Fan, D.

Fang, Z.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Ferrari, A. C.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Freitag, M.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
[Crossref] [PubMed]

García, F. J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

García De Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Gomez-Diaz, J. S.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
[Crossref]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics,  6(11), 749–758(2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Groenendijk, D. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

Guo, C. C.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Guo, Z.

Halas, N. J.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Han, J.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Hu, Z.

Huang, M.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Jang, M. S.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Jiang, G.

Jiang, Y.

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
[Crossref]

Katsnelson, M. I.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
[Crossref]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Koppens, F. H.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
[Crossref]

Kotakoski, J.

J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov, “Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects,” ACS Nano,  6(1), 671–676(2012).
[Crossref]

Krasheninnikov, A. V.

J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov, “Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects,” ACS Nano,  6(1), 671–676(2012).
[Crossref]

Lan, G. L.

J. P. Nong, W. Wei, W. Wang, and G. L. Lan, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express,  26(2), 1291–1294(2018).
[Crossref]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Li, X.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Liang, Y.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
[Crossref]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Liu, K.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Liu, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Liu, W.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

Liu, Y.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Liu, Z.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett.,  16(6), 3457–3462(2016).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Lombardo, A.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

Lou, J.

J. Lou, X. Xu, and P. D. Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” ACS Nano,  8(8), 8292–8299(2014).
[Crossref] [PubMed]

Low, T.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

Lu, W.

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett.,  42(13), 2659–2662(2017).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

Ma, Z.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

Mazurenko, V. G.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
[Crossref]

Mcleod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Melcon, A. A.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
[Crossref]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Neto, A. H. C.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

A. H. C. Neto, “The electronic properties of graphene,” Rev. mod. phys.,  81(1), 109 (2009).
[Crossref]

Ni, X.

Nong, J. P.

J. P. Nong, W. Wei, W. Wang, and G. L. Lan, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express,  26(2), 1291–1294(2018).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics,  6(11), 749–758(2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Ouyang, Q.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics,  6(11), 749–758(2012).
[Crossref]

Prishchenko, D. A.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Qin, S.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

Qin, S. Q.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
[Crossref] [PubMed]

Qu, J.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Ra, Y.

Y. Ra, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves : Theory, Design, and Realizations,” Phys. Rev. Appl.,  3(3), 037001(2015).
[Crossref]

Rodin, A. S.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett.,  112(17), 1–5(2014).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

Rudenko, A. N.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
[Crossref]

Salisbury, W. W.

W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent, 2599944 (1952).

Santos-Cottin, D.

J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov, “Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects,” ACS Nano,  6(1), 671–676(2012).
[Crossref]

Schlather, A.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Shao, Y.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
[Crossref] [PubMed]

Simovski, C. R.

Y. Ra, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves : Theory, Design, and Realizations,” Phys. Rev. Appl.,  3(3), 037001(2015).
[Crossref]

Soklaski, R.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
[Crossref]

Song, J.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
[Crossref]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Steele, G. A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
[Crossref]

Tang, D.

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
[Crossref]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Tran, V.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
[Crossref]

Tretyakov, S. A.

Y. Ra, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves : Theory, Design, and Realizations,” Phys. Rev. Appl.,  3(3), 037001(2015).
[Crossref]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

V. D. Zant, H. S. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science,  332(6035), 1291–1294(2011).
[Crossref] [PubMed]

Van Der Zant, H. S. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B,  56(4),281–284(2007).
[Crossref]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Wang, H.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

Wang, J.

Wang, L.

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett.,  42(13), 2659–2662(2017).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

Wang, M.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

Wang, T.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Wang, W.

J. P. Nong, W. Wei, W. Wang, and G. L. Lan, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express,  26(2), 1291–1294(2018).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Wei, W.

J. P. Nong, W. Wei, W. Wang, and G. L. Lan, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express,  26(2), 1291–1294(2018).
[Crossref]

Wen, S.

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Wu, H. W.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett.,  109(24), 241902(2016).
[Crossref]

Wu, Y.

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Xia, F.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Xiong, F.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

Xu, C.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
[Crossref] [PubMed]

Xu, X.

J. Lou, X. Xu, and P. D. Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” ACS Nano,  8(8), 8292–8299(2014).
[Crossref] [PubMed]

Yan, H.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Yan, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Yang, L.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
[Crossref]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Ye, P. D.

J. Lou, X. Xu, and P. D. Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” ACS Nano,  8(8), 8292–8299(2014).
[Crossref] [PubMed]

Ye, W. M.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Yong, K.-T.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Yu, A.

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

Yu, X.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express,  23(10), 12823(2015).
[Crossref] [PubMed]

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Yuan, X.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

Yuan, X. D.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Yuan, Y.

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

Zhang, H.

Zhang, J.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

Zhang, J. F.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Zhang, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

Zhao, C.

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

Zhou, Y.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett.,  109(24), 241902(2016).
[Crossref]

Zhu, J.

Zhu, W.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

Zhu, X.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Zhu, Z.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

Zhu, Z. H.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

Zurutuza Elorza, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

2D Mater. (2)

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater.,  4(2), 25064(2017).
[Crossref]

Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, and K.-T. Yong, “Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight,” 2D Mater.,  5(2), 025015(2018).
[Crossref]

ACS Nano (3)

J. Lou, X. Xu, and P. D. Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” ACS Nano,  8(8), 8292–8299(2014).
[Crossref] [PubMed]

J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov, “Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects,” ACS Nano,  6(1), 671–676(2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano,  6(9), 7806–7813(2012).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, “Broadband Black-Phosphorus Photodetectors with High Responsivity,” Adv. Mater.,  28(18), 3481–3485(2016).
[Crossref] [PubMed]

Appl. Phys. A (1)

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A,  114(4), 1017–1021(2014).
[Crossref]

Appl. Phys. Lett. (1)

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett.,  109(24), 241902(2016).
[Crossref]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B,  56(4),281–284(2007).
[Crossref]

J. Appl. Phys. (1)

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys.,  116(10), 104304(2014).
[Crossref]

J. Optics (2)

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Optics,  19(7), 2–5(2017).
[Crossref]

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: Anisotropic elliptical propagation and nonlocality-induced canalization,” J. Optics,  18(10), 1–10(2016).
[Crossref]

Nano Lett. (4)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett.,  16(6), 3457–3462(2016).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, H. S. J. V. D. Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett.,  14(6), 3347(2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett.,  13(6), 2541–2547(2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett.,  14(1), 299–304 (2013).
[Crossref] [PubMed]

Nanomaterials (1)

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials,  6(9), 155(2016).
[Crossref]

Nanoscale (1)

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale,  7(32), 13530–13536(2015).
[Crossref] [PubMed]

Nat. Commun. (3)

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun.,  4, 1951(2013).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.,  2(1), 577–579(2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.,  2(1), 455–458(2011).
[Crossref]

Nat. Nanotechnol. (2)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.,  7(5), 330–334(2012).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol.,  9(5), 372–377(2014).
[Crossref] [PubMed]

Nat. Photonics (3)

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics,  6(4), 259–264(2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics,  4(9), 611–622(2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics,  6(11), 749–758(2012).
[Crossref]

Nature (2)

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature,  487(7405), 77–81(2012).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature,  487(7405), 82(2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys.,  18(38), 26661–26669(2016).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

Y. Ra, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves : Theory, Design, and Realizations,” Phys. Rev. Appl.,  3(3), 037001(2015).
[Crossref]

Phys. Rev. B (2)

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B,  89(23), 1–6(2014).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B,  90(7), 075434(2014).
[Crossref]

Phys. Rev. Lett. (2)

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett.,  112(17), 1–5(2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett.,  113(10), 5–9(2014).
[Crossref]

Rev. mod. phys. (1)

A. H. C. Neto, “The electronic properties of graphene,” Rev. mod. phys.,  81(1), 109 (2009).
[Crossref]

Sci. Rep. (1)

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep.,  4, 5470(2014).
[Crossref] [PubMed]

Science (3)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science,  332(6035), 1291–1294(2011).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,  306(5696), 666–669(2004).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science,  349(6244), 165–168(2015).
[Crossref] [PubMed]

Other (1)

W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent, 2599944 (1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison of plasmon resonances between monolayer BP, graphene and G-BP bilayer structure. (a, b, c) Scheme of the proposed devices. The nanodisks array of two-dimensional material are placed on the semi-infinite substrate. The period is P = Px = Py = 250 nm and the diameter of the nanodisks is D = 150 nm. (d, e, f) simulated spectra of total absorption when the electric field polarizes along x- and y-direction with the doping concentration n = 1.9 × 1013cm−2 (Ef ≈ 0.5 eV).
Fig. 2
Fig. 2 Simulated spectra of total absorption when the electric field polarizes along both x- and y-direction with different separations between the graphene nanodisk and the BP nanodisk. The separation ranges from t = 0 to 20 nm. The insets show the distributions of normalized electric fields at the resonance wavelength for y-polarized light.
Fig. 3
Fig. 3 Anisotropic perfect absorption in G-BP bilayer structure with reflecting mirror. (a) Scheme of the proposed structure. From top to bottom of the structures are array of G-insulator-BP nanodisks, dielectric layer, gold layer and semi-infinite substrate (not shown in the figure). The geometry parameters (period P and diameter D) are the same as the Fig. 1. (b) Simulated spectra of total absorption for both polarization with the doping concentration n = 1.9 × 1013cm−2 (Ef ≈ 0.5 eV). (c, d) Electric field in the z-direction for both polarization. c and d belong to x-polarization at the resonance wavelength of 11.08 μm and y-polarization at the resonance wavelength of 12.68 μm, respectively. The field is plotted in the x–y plane that is 4 nm above the G-insulator-BP nanodisks.
Fig. 4
Fig. 4 Anisotropic absorption of metallic nanoparticles loaded G-BP bilayer. (a) Scheme of the new structure. From the top to the bottom are an array of gold nanoparticles, an insulator layer marked as a, monolayer BP, an insulator layer marked as b, the graphene layer, a dielectric layer, a gold mirror and a semi-infinite substrate. The period is Px = Py = P = 500 nm and the diameter of the gold nanoparticle is D = 450 nm. (b) Simulated spectra of total absorption for both polarization with the doping concentration n = 1.9 × 1013cm−2 (Ef ≈ 0.5 eV). (c,d) Spectra tunability of absorption with the variation of Fermi energy ranging from 0.4 eV to 0.7 eV.
Fig. 5
Fig. 5 Angular dispersions of the total absorption for (a) electric field along y-direction(TE) and (b) electric field along x-direction(TM). Here we use the structure in Fig. 4. The doping concentration is n = 1.9 × 1013cm−2 (Ef ≈ 0.5 eV).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) = 2 e 2 k B T π 2 i ω + i τ 1 ln [ 2 cosh E f 2 k B T ] + e 2 8 + e 2 4 [ 1 π arctan ( ω 2 E f 2 k B T ) i 2 π ln ( ω + 2 E f ) 2 ( ω + 2 E f ) 2 + ( 2 k B T ) 2 ]
σ j = i e 2 n m j ( ω + i η )

Metrics