Abstract

Probing suspended particles in seawater, such as microalgae, microplastics and silts, is very important for environmental monitoring and ecological research. We propose a method based on polarized light scattering to differentiate different suspended particles massively and rapidly. The optical path follows a similar design of a commonly used marine instrument, BB9, which records backscattering of non-polarized light at 120°. In addition, polarization elements are added to the incident and scattering path for taking polarization measurements. Experiments with polystyrene microspheres, porous polystyrene microspheres, silicon dioxide microspheres, and different marine microalgae show that by carefully choosing the incident polarization state and analyzing the polarization features of the scattered light at 120°, these particles can be effectively differentiated. Simulations based on the Mie scattering theory and discrete dipole approximation (DDA) have also been conducted for particles of different sizes, shapes and refractive indices, which help to understand the relationship between the polarization features and the physical properties of the particles. The laboratory system may serve as a prove-of-concept prototype of new instrumentations for applications on board or even with submersibles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology

Lucile Duforêt-Gaurier, William Moutier, Natacha Guiselin, Mélilotus Thyssen, George Dubelaar, Xavier Mériaux, Lucie Courcot, David Dessailly, and Hubert Loisel
Opt. Express 23(24) 31510-31533 (2015)

Effects of asphericity on single-particle polarized light scattering

Richard W. Spinrad and Jeffrey Brown
Appl. Opt. 32(30) 6151-6158 (1993)

Polarized light scattering by aerosols in the marine atmospheric boundary layer

Mary S. Quinby-Hunt, Lael L. Erskine, and Arlon J. Hunt
Appl. Opt. 36(21) 5168-5184 (1997)

References

  • View by:
  • |
  • |
  • |

  1. T. Garrison, Essentials of Oceanography (Cengage Learning, 1999).
  2. D. M. Anderson, “Turning back the harmful red tide,” Nature 388(6642), 513–514 (1997).
    [Crossref]
  3. S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut. 178, 483–492 (2013).
    [Crossref] [PubMed]
  4. I. D. James, “Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review,” Environ. Model. Softw. 17(4), 363–385 (2002).
    [Crossref]
  5. R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
    [Crossref]
  6. D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
    [Crossref] [PubMed]
  7. X. Zhang, E. Boss, and D. J. Gray, “Significance of scattering by oceanic particles at angles around 120 degree,” Opt. Express 22(25), 31329–31336 (2014).
    [Crossref] [PubMed]
  8. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
    [Crossref] [PubMed]
  9. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).
  10. E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
    [Crossref]
  11. D. Stramski, “Corrigendum to “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 4, 93–99 (2008).
  12. V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
    [Crossref]
  13. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).
  14. R. A. Reynolds, D. Stramski, and G. Neukermans, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition,” Limnol. Oceanogr. 61(5), 1869–1890 (2016).
    [Crossref]
  15. T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
    [Crossref]
  16. L. G. Sokoletsky and F. Shen, “Optical closure for remote-sensing reflectance based on accurate radiative transfer approximations: the case of the Changjiang (Yangtze) River Estuary and its adjacent coastal area, China,” Int. J. Remote Sens. 35(11–12), 4193–4224 (2014).
    [Crossref]
  17. A. Mignot, R. Ferrari, and H. Claustre, “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom,” Nat. Commun. 9(1), 190 (2018).
    [Crossref] [PubMed]
  18. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
    [Crossref] [PubMed]
  19. M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. Oceans 112, C05026 (2007).
  20. D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, and H. Ma, “Differentiation of soot particulates in air using polarized light scattering method,” Appl. Opt. 56(14), 4123–4129 (2017).
    [Crossref] [PubMed]
  21. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [Crossref] [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  23. M. Chami, A. Thirouard, and T. Harmel, “POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols,” Opt. Express 22(21), 26403–26428 (2014).
    [Crossref] [PubMed]
  24. D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, and H. Ma, “Differentiation of soot particulates in air using polarized light scattering method,” Appl. Opt. 56(14), 4123–4129 (2017).
    [Crossref] [PubMed]
  25. R. Liao and H. Ma, “Study on errors of nonsimultaneous polarized-light scattering measurements of suspended rod-shaped particles,” Appl. Opt. 54(3), 418–424 (2015).
    [Crossref]
  26. J. Chang, N. Zeng, H. He, Y. He, and H. Ma, “Single-shot spatially modulated Stokes polarimeter based on a GRIN lens,” Opt. Lett. 39(9), 2656–2659 (2014).
    [Crossref] [PubMed]
  27. J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
    [Crossref] [PubMed]
  28. G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
    [Crossref]
  29. M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
    [Crossref] [PubMed]
  30. T. Sapatinas, Discriminant Analysis and Statistical Pattern Recognition (Wiley-Interscience, 2004).
  31. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).
  32. B. T. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  33. B. T. Draine and P. J. Flatau, “Discrete-Dipole Approximation for Scattering Calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  34. H. R. Gordon, “Light scattering and absorption by randomly-oriented cylinders: dependence on aspect ratio for refractive indices applicable for marine particles,” Opt. Express 19(5), 4673–4691 (2011).
    [Crossref] [PubMed]
  35. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  36. M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, and P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
    [Crossref] [PubMed]
  37. H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
    [Crossref] [PubMed]
  38. X. Li, R. Liao, J. Zhou, P. T. Y. Leung, M. Yan, and H. Ma, “Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks,” Appl. Opt. 56(23), 6520–6530 (2017).
    [Crossref] [PubMed]

2018 (1)

A. Mignot, R. Ferrari, and H. Claustre, “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom,” Nat. Commun. 9(1), 190 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (2)

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

R. A. Reynolds, D. Stramski, and G. Neukermans, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition,” Limnol. Oceanogr. 61(5), 1869–1890 (2016).
[Crossref]

2015 (1)

2014 (5)

2013 (2)

S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut. 178, 483–492 (2013).
[Crossref] [PubMed]

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

2011 (3)

H. R. Gordon, “Light scattering and absorption by randomly-oriented cylinders: dependence on aspect ratio for refractive indices applicable for marine particles,” Opt. Express 19(5), 4673–4691 (2011).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
[Crossref] [PubMed]

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

2008 (1)

D. Stramski, “Corrigendum to “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 4, 93–99 (2008).

2007 (1)

M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. Oceans 112, C05026 (2007).

2006 (3)

2005 (1)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).

2004 (1)

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

2002 (1)

I. D. James, “Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review,” Environ. Model. Softw. 17(4), 363–385 (2002).
[Crossref]

2001 (1)

1997 (1)

D. M. Anderson, “Turning back the harmful red tide,” Nature 388(6642), 513–514 (1997).
[Crossref]

1994 (1)

1992 (1)

R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
[Crossref]

1988 (1)

B. T. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Anderson, D. M.

G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
[Crossref]

D. M. Anderson, “Turning back the harmful red tide,” Nature 388(6642), 513–514 (1997).
[Crossref]

Au, D. W.

M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
[Crossref] [PubMed]

Baratange, F.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

Behrenfeld, M. J.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).

Boss, E.

X. Zhang, E. Boss, and D. J. Gray, “Significance of scattering by oceanic particles at angles around 120 degree,” Opt. Express 22(25), 31329–31336 (2014).
[Crossref] [PubMed]

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

Brown, I.

Buddhiwant, P.

Burtner, A. M.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Calzado, V. S.

Chami, M.

Chang, J.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, Y. He, and H. Ma, “Single-shot spatially modulated Stokes polarimeter based on a GRIN lens,” Opt. Lett. 39(9), 2656–2659 (2014).
[Crossref] [PubMed]

Chen, Y.

Chenault, D. B.

Chiang, M. W.

M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
[Crossref] [PubMed]

Ciochetto, A. B.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Claustre, H.

A. Mignot, R. Ferrari, and H. Claustre, “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom,” Nat. Commun. 9(1), 190 (2018).
[Crossref] [PubMed]

Cunningham, A.

Dall’Olmo, G.

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

Davies-Colley, R. J.

R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
[Crossref]

Doxaran, D.

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-Dipole Approximation for Scattering Calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
[Crossref]

B. T. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Du, E.

Ferrari, R.

A. Mignot, R. Ferrari, and H. Claustre, “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom,” Nat. Commun. 9(1), 190 (2018).
[Crossref] [PubMed]

Flatau, P. J.

Galloway, T. S.

S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut. 178, 483–492 (2013).
[Crossref] [PubMed]

Garcia, V. M. T.

G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
[Crossref]

Ghosh, N.

Gilbert, S.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Goldstein, D. L.

Gordon, H. R.

Gray, D. J.

Gundersen, K.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Guo, Y.

Gupta, P. K.

Harmel, T.

Hawley, N.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

He, C.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

He, H.

He, Y.

Hickey, C. W.

R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
[Crossref]

Huang, Y.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

James, I. D.

I. D. James, “Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review,” Environ. Model. Softw. 17(4), 363–385 (2002).
[Crossref]

Janzen, C.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Johengen, T.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Johengen, T. H.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Korotaev, G.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

Kulis, D. M.

G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
[Crossref]

Lee, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

Leung, P. T. Y.

Li, D.

Li, W.

Li, X.

X. Li, R. Liao, J. Zhou, P. T. Y. Leung, M. Yan, and H. Ma, “Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks,” Appl. Opt. 56(23), 6520–6530 (2017).
[Crossref] [PubMed]

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

Liao, R.

Lilly, E. L.

G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
[Crossref]

Liu, S.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

Ma, H.

D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, and H. Ma, “Differentiation of soot particulates in air using polarized light scattering method,” Appl. Opt. 56(14), 4123–4129 (2017).
[Crossref] [PubMed]

D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, and H. Ma, “Differentiation of soot particulates in air using polarized light scattering method,” Appl. Opt. 56(14), 4123–4129 (2017).
[Crossref] [PubMed]

X. Li, R. Liao, J. Zhou, P. T. Y. Leung, M. Yan, and H. Ma, “Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks,” Appl. Opt. 56(23), 6520–6530 (2017).
[Crossref] [PubMed]

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

R. Liao and H. Ma, “Study on errors of nonsimultaneous polarized-light scattering measurements of suspended rod-shaped particles,” Appl. Opt. 54(3), 418–424 (2015).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, Y. He, and H. Ma, “Single-shot spatially modulated Stokes polarimeter based on a GRIN lens,” Opt. Lett. 39(9), 2656–2659 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
[Crossref] [PubMed]

Manhas, S.

Martinez-Vicente, V.

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

McFarland, M. N.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

McKee, D.

Mignot, A.

A. Mignot, R. Ferrari, and H. Claustre, “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom,” Nat. Commun. 9(1), 190 (2018).
[Crossref] [PubMed]

Moore, T. S.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Mouw, C. B.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Nayak, A. R.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Neukermans, G.

R. A. Reynolds, D. Stramski, and G. Neukermans, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition,” Limnol. Oceanogr. 61(5), 1869–1890 (2016).
[Crossref]

Paladino, D.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Pegau, W. S.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

Persich, G. R.

G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
[Crossref]

Purcell, H.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Quinn, J. M.

R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
[Crossref]

Reynolds, R. A.

R. A. Reynolds, D. Stramski, and G. Neukermans, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition,” Limnol. Oceanogr. 61(5), 1869–1890 (2016).
[Crossref]

Robertson, C.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Ruberg, S.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Ryan, P. A.

R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
[Crossref]

Sathyendranath, S.

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

Schar, D. W. H.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Shaw, J. A.

Shea, D. M.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).

Shen, F.

L. G. Sokoletsky and F. Shen, “Optical closure for remote-sensing reflectance based on accurate radiative transfer approximations: the case of the Changjiang (Yangtze) River Estuary and its adjacent coastal area, China,” Int. J. Remote Sens. 35(11–12), 4193–4224 (2014).
[Crossref]

Shen, M.

M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
[Crossref] [PubMed]

Shybanov, E.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

Siegel, D. A.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).

Smith, G. J.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Sokoletsky, L. G.

L. G. Sokoletsky and F. Shen, “Optical closure for remote-sensing reflectance based on accurate radiative transfer approximations: the case of the Changjiang (Yangtze) River Estuary and its adjacent coastal area, China,” Int. J. Remote Sens. 35(11–12), 4193–4224 (2014).
[Crossref]

Stockley, N. D.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Stramski, D.

R. A. Reynolds, D. Stramski, and G. Neukermans, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition,” Limnol. Oceanogr. 61(5), 1869–1890 (2016).
[Crossref]

D. Stramski, “Corrigendum to “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 4, 93–99 (2008).

Sullivan, J. M.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Sun, M.

Swami, M. K.

Tamburri, M. N.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Tarran, G.

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

Taylor, L.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Thirouard, A.

Thompson, R. C.

S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut. 178, 483–492 (2013).
[Crossref] [PubMed]

Twardowski, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

Twardowski, M. S.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Tyo, J. S.

Uppal, A.

Vitkin, I. A.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

Wang, Y.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

Weidemann, A.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Wright, S. L.

S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut. 178, 483–492 (2013).
[Crossref] [PubMed]

Wu, J.

Xu, J.

M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
[Crossref] [PubMed]

Yan, M.

Yu, A. W.

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Yun, T.

Zeng, M.

Zeng, N.

Zhan, D.

Zhang, X.

Zhou, J.

Appl. Opt. (7)

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
[Crossref] [PubMed]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, and H. Ma, “Differentiation of soot particulates in air using polarized light scattering method,” Appl. Opt. 56(14), 4123–4129 (2017).
[Crossref] [PubMed]

D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, and H. Ma, “Differentiation of soot particulates in air using polarized light scattering method,” Appl. Opt. 56(14), 4123–4129 (2017).
[Crossref] [PubMed]

R. Liao and H. Ma, “Study on errors of nonsimultaneous polarized-light scattering measurements of suspended rod-shaped particles,” Appl. Opt. 54(3), 418–424 (2015).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

X. Li, R. Liao, J. Zhou, P. T. Y. Leung, M. Yan, and H. Ma, “Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks,” Appl. Opt. 56(23), 6520–6530 (2017).
[Crossref] [PubMed]

Aquat. Toxicol. (1)

M. Shen, J. Xu, M. W. Chiang, and D. W. Au, “Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina,” Aquat. Toxicol. 104(3-4), 185–191 (2011).
[Crossref] [PubMed]

Astrophys. J. (1)

B. T. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Biogeosciences (1)

D. Stramski, “Corrigendum to “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 4, 93–99 (2008).

Biomed. Opt. Express (1)

Environ. Model. Softw. (1)

I. D. James, “Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review,” Environ. Model. Softw. 17(4), 363–385 (2002).
[Crossref]

Environ. Pollut. (1)

S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut. 178, 483–492 (2013).
[Crossref] [PubMed]

Front. Mater. Sci. (1)

T. S. Moore, C. B. Mouw, J. M. Sullivan, M. S. Twardowski, A. M. Burtner, A. B. Ciochetto, M. N. McFarland, A. R. Nayak, D. Paladino, N. D. Stockley, T. H. Johengen, A. W. Yu, S. Ruberg, and A. Weidemann, “Bio-optical properties on Cyanobacteria blooms in Western Lake Erie,” Front. Mater. Sci. 4, 300 (2017).
[Crossref]

Geophys. Res. Lett. (1)

V. Martinez-Vicente, G. Dall’Olmo, G. Tarran, E. Boss, and S. Sathyendranath, “Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean,” Geophys. Res. Lett. 40(6), 1154–1158 (2013).
[Crossref]

Glob. Biogeochem. Cycle (1)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycle 19, 2299 (2005).

Harmful Algae (1)

G. R. Persich, D. M. Kulis, E. L. Lilly, D. M. Anderson, and V. M. T. Garcia, “Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil,” Harmful Algae 5(1), 36–44 (2006).
[Crossref]

Hydrobiologia (1)

R. J. Davies-Colley, C. W. Hickey, J. M. Quinn, and P. A. Ryan, “Effects of clay discharges on streams. 1. Optical properties and epilithon,” Hydrobiologia 248(3), 215–234 (1992).
[Crossref]

Int. J. Remote Sens. (1)

L. G. Sokoletsky and F. Shen, “Optical closure for remote-sensing reflectance based on accurate radiative transfer approximations: the case of the Changjiang (Yangtze) River Estuary and its adjacent coastal area, China,” Int. J. Remote Sens. 35(11–12), 4193–4224 (2014).
[Crossref]

J. Biomed. Opt. (2)

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21(5), 56002 (2016).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

J. Geophys. Res. Oceans (1)

M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. Oceans 112, C05026 (2007).

J. Geophys. Res.-Oceans (1)

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res.-Oceans 109, C001514 (2004).

J. Opt. Soc. Am. A (1)

Limnol. Oceanogr. (1)

R. A. Reynolds, D. Stramski, and G. Neukermans, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition,” Limnol. Oceanogr. 61(5), 1869–1890 (2016).
[Crossref]

Limnol. Oceanogr. Methods (1)

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Nat. Commun. (1)

A. Mignot, R. Ferrari, and H. Claustre, “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom,” Nat. Commun. 9(1), 190 (2018).
[Crossref] [PubMed]

Nature (1)

D. M. Anderson, “Turning back the harmful red tide,” Nature 388(6642), 513–514 (1997).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

T. Sapatinas, Discriminant Analysis and Statistical Pattern Recognition (Wiley-Interscience, 2004).

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).

T. Garrison, Essentials of Oceanography (Cengage Learning, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic of the experimental setup (a) and polarization state analyzer, PSA (b). S, light source; ATT, attenuator; PSG, polarization state generator; QW1, 45° fixed quarter wave-plate; P, rotatable linear polarizer; QW2, rotatable quarter wave-plate; DP, diaphragm; L1 L2 and L3, lens; PH, circular pinhole; PSA, polarization state analyzer; P1, 0°linear polarizer; P2, 90°linear polarizer; P3, 45°linear polarizer; P4, 135°linear polarizer; QW, 135°-fast-axis quarter wave-plate; PMT, photomultiplier tube. The combination of QW and P2 is a left circular analyzer.
Fig. 2
Fig. 2 Microscopic images of the two species of marine microalgae cells. (a) Alexandrium tamarense. (b) Chattonella marina.
Fig. 3
Fig. 3 The time series of the signal with 0° linearly polarized incident light and 45° linearly polarized analyzing. (a) Signals of the aquatic suspension of the polystyrene microspheres, (b) signals of the water without particles, and the two inserted plots are the details of two selected (dashed line square) fragments. Note that the scales of the vertical axes in (a) and (b) are different.
Fig. 4
Fig. 4 The scattered [q u v] (dots) and LDA distributions (lines in the dashed axes) of PS and P-PS. (a) H- incident, Lm = 2.10. (b) V- incident, Lm = 1.20. (c) P- incident, Lm = 9.30. (d) M- incident, Lm = 9.65. (e) R- incident, Lm = 8.04. (f) L- incident, Lm = 7.53.
Fig. 5
Fig. 5 The variation tendency of q, u and v scattered by different microspheres in the simulation. (a) The variation tendency of q, u and v scattered by microspheres with diameters varied from 0.1μm to 20.0μm, and the refractive index 1.46. (b) The variation tendency of q, u and v scattered by microspheres with refractive index varied from 1.07 to 1.66, and the diameter 10.0μm.
Fig. 6
Fig. 6 The variation of q, u and v as the aspect ratio changes from 0.5 to 4. The first points marked circle are the calculated q, u and v of a microsphere with the diameter 2μm, and the rests marked diamond are that of microcylinders with the same diameter but different aspect ratios.
Fig. 7
Fig. 7 Optimizing the incident polarization. (a) The Lm changes as the linear polarization angle rotate. (b) The separately measured scattered [q u v] and LDA distributions of the PS and P-PS with the optimized incident polarized light, Lm = 9.82. (c) The scattered [q u v] and LDA distributions of the mixed sample with the optimized incident polarized light.

Tables (1)

Tables Icon

Table 1 Lm of different particulates with the different incident polarized light.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S=[ I Q U V ].
S out =M× S in .
q=Q/I, u=U/I, v=V/I.
S out =A* I out .
[ S out 1 , S out 2 ,..., S out N ]=A*[ I out 1 , I out 2 ,..., I out N ].
L | μ 1 μ 2 | 2 / ( δ 1 2 + δ 2 2 ) .
x=f( [ q,u,v ] ).
M=[ m 11 m 12 0 0 m 12 m 11 0 0 0 0 m 33 m 34 0 0 m 34 m 33 ].

Metrics