Abstract

The nonlinear properties of hybrid metallic-dielectric systems are attracting great interest due to their potential for the enhancement of frequency conversion processes at nanoscale dimensions. In this work, we theoretically and experimentally address the correlation between the near field distribution of hexagonal plasmonic necklaces of silver nanoparticles formed on the surface of a LiNbO3 crystal and the second harmonic generation (SHG) produced by this nonlinear crystal in the vicinities of the necklaces. The spectral response of the hexagonal necklaces does not depend on the polarization direction and is characterized by two main modes, the absorptive high-energy mode located in the UV spectral region and the lower energy mode, which is strongly radiant and extends from the visible to the near infrared region. We show that the spatial distribution of the enhanced SHG is consistent with the local field related to the low energy plasmon mode, which spectrally overlaps the fundamental beam. The results are in agreement with the low absorption losses of this mode and the two-photon character of the nonlinear process and provide deeper insight in the connection between the linear and nonlinear optical properties of the hybrid plasmonic-ferroelectric system. The study also highlights the potential of hexagonal necklaces as useful plasmonic platforms for enhanced optical processes at the nanoscale.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

Laura Sánchez-García, Christos Tserkezis, Mariola O Ramírez, Pablo Molina, Joan J. Carvajal, Magdalena Aguiló, Francesc Díaz, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 24(8) 8491-8500 (2016)

Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence

Eduardo Yraola, Laura Sánchez-García, Christos Tserkezis, Pablo Molina, Mariola O Ramírez, Jose Luis Plaza, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 23(12) 15670-15679 (2015)

Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability

Pemba Lama, Anatoliy Suslov, Ardie D. Walser, and Roger Dorsinville
Opt. Express 22(11) 14014-14021 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  2. J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced application,” ACS Nano 9(11), 10545–10562 (2015).
    [Crossref] [PubMed]
  3. B. Metzger, M. Hentschel, and H. Giessen, “Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures,” ACS Photonics 3(8), 1336–1350 (2016).
    [Crossref]
  4. A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
    [Crossref]
  5. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
    [Crossref] [PubMed]
  6. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
    [Crossref] [PubMed]
  7. D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
    [Crossref]
  8. S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
    [Crossref] [PubMed]
  9. K. Thyagarajan, J. Butet, and O. J. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
    [Crossref] [PubMed]
  10. S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
    [Crossref] [PubMed]
  11. B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
    [Crossref] [PubMed]
  12. K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
    [Crossref]
  13. G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
    [Crossref] [PubMed]
  14. J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
    [Crossref] [PubMed]
  15. H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
    [Crossref]
  16. D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
    [Crossref] [PubMed]
  17. L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
    [Crossref] [PubMed]
  18. X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
    [Crossref] [PubMed]
  19. A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
    [Crossref] [PubMed]
  20. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
    [Crossref]
  21. A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
    [Crossref]
  22. L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
    [Crossref] [PubMed]
  23. L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
    [Crossref]
  24. M. O. Ramírez, P. Molina, and L. E. Bausá, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater. 34(3), 524–535 (2012).
    [Crossref]
  25. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
    [Crossref]
  26. J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
    [Crossref]
  27. E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
    [Crossref] [PubMed]
  28. L. Mateos, L. E. Bausá, and M. O. Ramírez, “Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett. 102(4), 042910 (2013).
    [Crossref]
  29. E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
    [Crossref]
  30. C. Hafner, Post-modern electromagnetics: using intelligent Maxwell solvers. (John Wiley & Sons, 1999).
  31. H. X. Xu and M. Kall, “Estimating SERS properties of silver-particle aggregates through generalized Mie theory,” in Surface-Enhanced Raman Scattering. K. Kneipp, M. Moskovits, and H. Kneipp, eds. (Springer-Verlag, 2006).
  32. R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007).
    [Crossref] [PubMed]
  33. S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
    [Crossref] [PubMed]
  34. C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
    [Crossref]
  35. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19(7), 6450–6461 (2011).
    [Crossref] [PubMed]
  36. L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
    [Crossref] [PubMed]
  37. R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
    [Crossref] [PubMed]
  38. E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
    [Crossref] [PubMed]
  39. G. Aguirregabiria, J. Aizpurua, and R. Esteban, “Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared,” Opt. Express 25(12), 13760–13772 (2017).
    [Crossref] [PubMed]
  40. P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
    [Crossref] [PubMed]
  41. D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
    [Crossref]
  42. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [Crossref]
  43. D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
    [Crossref] [PubMed]
  44. R. Thomas and R. S. Swathi, “Linear and polygonal assemblies of plasmonic nanoparticles: incident light polarization dictates hot spots,” J. Phys. Chem. C 120(33), 18733–18740 (2016).
    [Crossref]

2018 (1)

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

2017 (3)

G. Aguirregabiria, J. Aizpurua, and R. Esteban, “Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared,” Opt. Express 25(12), 13760–13772 (2017).
[Crossref] [PubMed]

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

2016 (9)

L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
[Crossref] [PubMed]

H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
[Crossref]

B. Metzger, M. Hentschel, and H. Giessen, “Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures,” ACS Photonics 3(8), 1336–1350 (2016).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

R. Thomas and R. S. Swathi, “Linear and polygonal assemblies of plasmonic nanoparticles: incident light polarization dictates hot spots,” J. Phys. Chem. C 120(33), 18733–18740 (2016).
[Crossref]

2015 (6)

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced application,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

2014 (5)

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

2013 (4)

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

L. Mateos, L. E. Bausá, and M. O. Ramírez, “Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett. 102(4), 042910 (2013).
[Crossref]

K. Thyagarajan, J. Butet, and O. J. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[Crossref] [PubMed]

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

2012 (6)

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

M. O. Ramírez, P. Molina, and L. E. Bausá, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater. 34(3), 524–535 (2012).
[Crossref]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

2011 (2)

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19(7), 6450–6461 (2011).
[Crossref] [PubMed]

2009 (1)

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

2007 (2)

R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007).
[Crossref] [PubMed]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

2006 (1)

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
[Crossref]

2002 (1)

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Aguiló, M.

Aguirregabiria, G.

Aizpurua, J.

G. Aguirregabiria, J. Aizpurua, and R. Esteban, “Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared,” Opt. Express 25(12), 13760–13772 (2017).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Alvarez, T.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Arie, A.

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Baev, A.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Bahabad, A.

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

Barrow, S. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Baumberg, J. J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Bausá, L. E.

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
[Crossref] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

L. Mateos, L. E. Bausá, and M. O. Ramírez, “Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett. 102(4), 042910 (2013).
[Crossref]

M. O. Ramírez, P. Molina, and L. E. Bausá, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater. 34(3), 524–535 (2012).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

Beitner, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

Benichou, E.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Bernasconi, G. D.

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Bonnell, D. A.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Bragas, A. V.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Bravo-Abad, J.

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

Brevet, P. F.

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced application,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Butet, J.

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced application,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[Crossref] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Caldarola, M.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Canalias, C.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

Carrasco, I.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

Carvajal, J. J.

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Chang, C. C.

R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007).
[Crossref] [PubMed]

Chang, W. S.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

Chang, W.-S.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

Chen, Y.

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Chern, R. L.

R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007).
[Crossref] [PubMed]

Chester, M. H.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

Chong, W. K.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Comedi, D.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Cortés, E.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Davis, T. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

de las Heras, C.

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

Deng, J.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Díaz, F.

Dietrich, K.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Duan, H.

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Dunn, S.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Esteban, R.

G. Aguirregabiria, J. Aizpurua, and R. Esteban, “Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared,” Opt. Express 25(12), 13760–13772 (2017).
[Crossref] [PubMed]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Ferris, J. H.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Floess, D.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Forstner, J.

H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
[Crossref]

Fuchs, J.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Funston, A. M.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

Galisteo, J.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

Gananni-Padowicz, A.

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

Gayer, O.

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

Giessen, H.

B. Metzger, M. Hentschel, and H. Giessen, “Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures,” ACS Photonics 3(8), 1336–1350 (2016).
[Crossref]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Gómez, D. E.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

Gómez-Tornero, A.

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

Grange, R.

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Grinblat, G.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Gruverman, A.

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
[Crossref]

Grynko, Y.

H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
[Crossref]

Gui, L.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Hanson, J. N.

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
[Crossref]

Hartung, H.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Hentschel, M.

B. Metzger, M. Hentschel, and H. Giessen, “Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures,” ACS Photonics 3(8), 1336–1350 (2016).
[Crossref]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Hernandez-Pinilla, D.

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

Hou, Y.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Hu, Z.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Jonin, C.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Juwiler, I.

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

Kachynski, A. V.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Kalinin, S. V.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Kivshar, Y. S.

Kley, E. B.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Kuzmin, A. N.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Lascoux, N.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Lehr, D.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Lei, D. Y.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Lei, X.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Leong, E. S. P.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Li, G. C.

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Li, G.-C.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Li, Z.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Linden, S.

H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
[Crossref]

Link, S.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19(7), 6450–6461 (2011).
[Crossref] [PubMed]

Linnenbank, H.

H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
[Crossref]

Liu, S. D.

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Liu, S.-D.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Liu, X. X.

R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007).
[Crossref] [PubMed]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

López, C.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

Maier, S. A.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Martin, O. J.

K. Thyagarajan, J. Butet, and O. J. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[Crossref] [PubMed]

Martin, O. J. F.

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced application,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Mateos, L.

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

L. Mateos, L. E. Bausá, and M. O. Ramírez, “Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett. 102(4), 042910 (2013).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Menzel, C.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Metzger, B.

B. Metzger, M. Hentschel, and H. Giessen, “Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures,” ACS Photonics 3(8), 1336–1350 (2016).
[Crossref]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Molina, P.

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

M. O. Ramírez, P. Molina, and L. E. Bausá, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater. 34(3), 524–535 (2012).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

Mulvaney, P.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

Nemanich, R. J.

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
[Crossref]

Ogden, N.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Olson, J.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

Ong, H. C.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Pasiskevicius, V.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

Paul, A.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

Pertsch, T.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Plaza, J. L.

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

Pliss, A.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Prasad, P. N.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Qu, J.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Rahmani, M.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Ramírez, M. O.

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

L. Mateos, L. E. Bausá, and M. O. Ramírez, “Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett. 102(4), 042910 (2013).
[Crossref]

M. O. Ramírez, P. Molina, and L. E. Bausá, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater. 34(3), 524–535 (2012).
[Crossref]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express 20(28), 29940–29948 (2012).
[Crossref] [PubMed]

Reinhold, J.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Richter, J.

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Rodriguez, B. J.

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
[Crossref]

Russier-Antoine, I.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Sánchez-García, L.

Sergeyev, A.

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Shimamura, K.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

Slaughter, L. S.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

Smirnova, D.

Solis, D.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

Steinbrück, A.

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Sum, T. C.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Swanglap, P.

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

Swathi, R. S.

R. Thomas and R. S. Swathi, “Linear and polygonal assemblies of plasmonic nanoparticles: incident light polarization dictates hot spots,” J. Phys. Chem. C 120(33), 18733–18740 (2016).
[Crossref]

Taylor, R. W.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Teng, J. H.

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Thiele, I.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

Thomas, R.

R. Thomas and R. S. Swathi, “Linear and polygonal assemblies of plasmonic nanoparticles: incident light polarization dictates hot spots,” J. Phys. Chem. C 120(33), 18733–18740 (2016).
[Crossref]

Thyagarajan, K.

K. Thyagarajan, J. Butet, and O. J. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[Crossref] [PubMed]

Tserkezis, C.

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

L. Sánchez-García, C. Tserkezis, M. O. Ramírez, P. Molina, J. J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L. E. Bausá, “Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures,” Opt. Express 24(8), 8491–8500 (2016).
[Crossref] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

Tünnermann, A.

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Villora, E. G.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

Wei, F.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Wen, X.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Willingham, B.

Willingham, B. A.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Xiong, Q.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Yan, C.

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

Yang, K. Y.

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

Yip, J. N.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Yraola, E.

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. L. Plaza, J. Aizpurua, and L. E. Bausá, “Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence,” Opt. Express 23(12), 15670–15679 (2015).
[Crossref] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

Yu, G.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, Q.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

Zhang, S.

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Zhu, X.

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

Zilk, M.

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

ACS Nano (4)

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced application,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, “Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation,” ACS Nano 10(12), 11105–11114 (2016).
[Crossref] [PubMed]

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

ACS Photonics (3)

K. Y. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. F. Martin, “Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures,” ACS Photonics 4(6), 1522–1530 (2017).
[Crossref]

B. Metzger, M. Hentschel, and H. Giessen, “Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures,” ACS Photonics 3(8), 1336–1350 (2016).
[Crossref]

D. Hernandez-Pinilla, P. Molina, C. de las Heras, J. Bravo-Abad, L. E. Bausá, and M. O. Ramírez, “Multiline operation from a single plasmon-assisted laser,” ACS Photonics 5(2), 406–412 (2018).
[Crossref]

Adv. Funct. Mater. (1)

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region,” Adv. Funct. Mater. 24(11), 1509–1518 (2014).
[Crossref]

Adv. Mater. (3)

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

A. Gómez-Tornero, C. Tserkezis, L. Mateos, L. E. Bausá, and M. O. Ramírez, “2D Arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation,” Adv. Mater. 29(15), 160527 (2017).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Appl. Phys. Lett. (2)

A. Gananni-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94(9), 091108 (2009).
[Crossref]

L. Mateos, L. E. Bausá, and M. O. Ramírez, “Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett. 102(4), 042910 (2013).
[Crossref]

J. Lumin. (1)

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin. 169, 569–573 (2016).
[Crossref]

J. Phys. Chem. C (1)

R. Thomas and R. S. Swathi, “Linear and polygonal assemblies of plasmonic nanoparticles: incident light polarization dictates hot spots,” J. Phys. Chem. C 120(33), 18733–18740 (2016).
[Crossref]

Langmuir (1)

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Light Sci. Appl. (1)

H. Linnenbank, Y. Grynko, J. Forstner, and S. Linden, “Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas,” Light Sci. Appl. 5(1), e16013 (2016).
[Crossref]

Nano Lett. (10)

D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. 15(2), 1025–1030 (2015).
[Crossref] [PubMed]

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12(8), 3967–3972 (2012).
[Crossref] [PubMed]

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[Crossref] [PubMed]

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, “Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures,” Nano Lett. 2(6), 589–593 (2002).
[Crossref]

P. Molina, E. Yraola, M. O. Ramírez, C. Tserkezis, J. L. Plaza, J. Aizpurua, J. Bravo-Abad, and L. E. Bausá, “Plasmon-assisted Nd3+-based solid-state nanolaser,” Nano Lett. 16(2), 895–899 (2016).
[Crossref] [PubMed]

D. Solis, A. Paul, J. Olson, L. S. Slaughter, P. Swanglap, W. S. Chang, and S. Link, “Turning the corner: efficient energy transfer in bent plasmonic Nanoparticle chain waveguides,” Nano Lett. 13(10), 4779–4784 (2013).
[Crossref] [PubMed]

Nanoscale (1)

J. Richter, A. Steinbrück, M. Zilk, A. Sergeyev, T. Pertsch, A. Tünnermann, and R. Grange, “Core-shell potassium niobate nanowires for enhanced nonlinear optical effects,” Nanoscale 6(10), 5200–5207 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology 17(19), 4946–4949 (2006).
[Crossref]

Nat. Nanotechnol. (1)

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Opt. Express (5)

Opt. Mater. (1)

M. O. Ramírez, P. Molina, and L. E. Bausá, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater. 34(3), 524–535 (2012).
[Crossref]

Optica (1)

Part. Part. Syst. Charact. (1)

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: Application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007).
[Crossref] [PubMed]

Other (2)

C. Hafner, Post-modern electromagnetics: using intelligent Maxwell solvers. (John Wiley & Sons, 1999).

H. X. Xu and M. Kall, “Estimating SERS properties of silver-particle aggregates through generalized Mie theory,” in Surface-Enhanced Raman Scattering. K. Kneipp, M. Moskovits, and H. Kneipp, eds. (Springer-Verlag, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Representative SEM image of a square-like arrangement of hexagonal necklaces of Ag NPs formed on the polar surface of a LiNbO3 crystal. The scale bar is 10 µm. b) High-resolution SEM image showing a detail of one corner of the hexagonal necklace. The scale bar corresponds to 500 nm. c) Histogram and distribution of the NPs diameter forming the plasmonic necklaces.
Fig. 2
Fig. 2 a) Evolution of the normalized far field extinction spectra calculated for regular hexagonal necklaces of silver nanoparticles when the number of NP in the hexagon is increased from 6 to 54 NPs. The spectra have been vertically shifted for the sake of comparison. b) Absorption and scattering cross-section spectra of a hexagonal necklace containing 54 NPs. The insets show the calculated near-field patterns of the in-plane component normal to the horizontal side of the hexagon at 370 nm (upper panel) and 350 nm (bottom panel) obtained for a plane wave polarized perpendicular to the horizontal hexagon side and normal incidence.
Fig. 3
Fig. 3 Top panel: Calculated extinction cross section spectrum for a linear chain composed of 10 NPs for an electric field oscillating parallel to the chain. Central panel: Extinction cross-section spectrum calculated for a hexagonal necklace containing 54 NPs. Bottom panel: experimental extinction spectrum of the fabricated necklaces composed by several hundred of NPs. The shaded regions in red and blue colors denote the spectral ranges associated with the fundamental and SHG regions involved in the frequency conversion processes.
Fig. 4
Fig. 4 a) Extinction cross section spectrum calculated for hexagons containing 6 NPs per side. b) Near field distributions of the high-energy modes. The upper panels correspond to the double peak structure located in the near UV spectral region (350 nm and 370 nm, respectively). The bottom panels refer to the higher-order resonances at the blue spectral regions. Namely, the spectral structure centered at around 425 nm and the side band peaking at around 470 nm. The colored dots indicate the spectral positions at which the near field distributions were computed. c) Near-field profile associated with the long-wavelength plasmonic mode centered at around 580 nm. At this wavelength, the maximum field enhancement at the gaps is around 100. The polarization of the incident light was parallel to the horizontal axis in all cases.
Fig. 5
Fig. 5 a) Near field distribution associated with the dominant long-wavelength mode calculated for different polarization orientations of the incoming electric field: θ = 0°, 45° and 90°. The maximum field enhancement at the gaps is around 100. To better illustrate the details, the plots were saturated at E/E0 = 10. b) Far field extinction cross-section spectra calculated for hexagons containing 54 NPs for three different polarization orientations of the incident plane wave. The spectra have been vertically shifted for the sake of clarity.
Fig. 6
Fig. 6 a) Representative SEM image showing several plasmonic necklaces organized on the polar surface of a LiNbO3 crystal. The inset displays the near field distribution of a single hexagon computed for the collective long-wavelength plasmonic mode when the incoming electric field was linearly polarized along one of the hexagon sides, θ = 0°.b) SHG intensity map recorded for a fundamental beam polarized parallel to a hexagon side (θPump = 0°). c) Spatial distribution of the SHG intensity analyzed at θSHG = 0° and θSHG = 90°. In both cases, the polarization angle of the fundamental beam was θPump = 0°. The scale bar in panel b) and c) is equal to 5 µm.

Metrics