Abstract

Lasing is reported for ridge-waveguide devices processed from a 40-stage InP-based quantum cascade laser structure grown on a 6-inch silicon substrate with a metamorphic buffer. The structure used in the proof-of-concept experiment had a typical design, including an Al0.78In0.22As/In0.73Ga0.27As strain-balanced composition, with high strain both in quantum wells and barriers relative to InP, and an all-InP waveguide with a total thickness of 8 µm. Devices of size 3 mm x 40 µm, with a high-reflection back facet coating, emitted at 4.35 µm and had a threshold current of approximately 2.2 A at 78 K. Lasing was observed up to 170 K. Compared to earlier demonstrated InP-based quantum cascade lasers monolithically integrated onto GaAs, the same laser structure integrated on silicon had a lower yield and reliability. Surface morphology analysis suggests that both can be significantly improved by reducing strain for the active region layers relative to InP bulk waveguide layers surrounding the laser core.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates

Yating Wan, Zeyu Zhang, Ruilin Chao, Justin Norman, Daehwan Jung, Chen Shang, Qiang Li, MJ Kennedy, Di Liang, Chong Zhang, Jin-Wei Shi, Arthur C. Gossard, Kei May Lau, and John E. Bowers
Opt. Express 25(22) 27715-27723 (2017)

2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit

Ruijun Wang, Stephan Sprengel, Gerhard Boehm, Muhammad Muneeb, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Opt. Express 24(18) 21081-21089 (2016)

Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
  2. A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
  3. A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
  4. P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
  5. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
  6. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
  7. R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).
  8. S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).
  9. Y. Cordier and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth 201-202, 263–266 (1999).
  10. W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).
  11. A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
  12. F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

2018 (2)

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

2017 (1)

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

2016 (3)

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

2013 (1)

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

2009 (1)

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

2008 (1)

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

2000 (1)

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).

1999 (1)

Y. Cordier and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth 201-202, 263–266 (1999).

Bahriz, M.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

Baranov, A. N.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Bergman, J.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Bewley, W.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Boissier, G.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Botez, D.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Bowers, J.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Brar, B.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Bulsara, M. T.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Caffey, D.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Caneau, C.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Capasso, F.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Cerutti, L.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Clark, D.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Cordier, Y.

Y. Cordier and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth 201-202, 263–266 (1999).

Daval, N.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Davenport, M.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Day, T.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Diehl, L.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Drazek, C.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Eisenbach, A.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

Fan, J.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Fang, X.-M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

Fastenau, J. M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Ferre, D.

Y. Cordier and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth 201-202, 263–266 (1999).

Fetters, M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

Figueiredo, P.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

Fitzgerald, E. A.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).

Furlong, M. J.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

Go, R.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Ha, W.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Herrick, K. J.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Hoke, W. E.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Hughes, L.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Kazior, T. E.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Kim, C.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Kirch, J.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Krysiak, H.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

LaRoche, R. R.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Leblanc, H.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Leshin, J.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

Liu, A. W. K.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

Liu, W. K.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Loghmari, Z.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Lubyshev, D.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Lyakh, A.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Maulini, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Mawst, L.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Merritt, C.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Meyer, J.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Narcy, G.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Nguyen-Van, H. H.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Patel, C. K. N.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Patriarche, G.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Peters, J.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Pflügl, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

Rodriguez, J.-B.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Shu, H.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

Smith, D.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Spott, A.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Stanton, E.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Suttinger, M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Teissier, R.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Thompson, R. F.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Ting, S. M.

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).

Todi, A.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

Tournet, J.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Tournié, E.

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

Tsekoun, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Tsvid, E.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

Urteaga, M.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Vurgaftman, I.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).

Wang, Q.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Wang, X.

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

Wu, Y.

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Xie, F.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Zah, C.

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

Zhang, C.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Appl. Phys. Lett. (4)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X.-M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112, 031103 (2018).

A. Lyakh, C. Pflügl, L. Diehl, Q. Wang, F. Capasso, X. Wang, J. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10 μm,” IEEE J. Sel. Top. Quantum Electron. 19, 1200508 (2013).

IEEE Photon. Technol. Lett. (1)

P. Figueiredo, M. Suttinger, R. Go, A. Todi, H. Shu, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).

J. Appl. Phys. (1)

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).

J. Cryst. Growth (2)

Y. Cordier and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth 201-202, 263–266 (1999).

W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, R. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, “Monolithic integration of III-V As-and P-based devices on Si through direct MBE growth and using lattice engineered substrates,” J. Cryst. Growth 311, 1979–1983 (2009).

Optica (1)

Photonics (1)

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).

Sci. Rep. (1)

H. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of composite M-buffer design that utilizes an inverse step grade for complete compensation of residual strain [8]. InAlAs composition at the end of the M buffer is lattice matched to InP.
Fig. 2
Fig. 2 Schematic of the full QCL-on-Si structure.
Fig. 3
Fig. 3 Nomarski (top) and 5 µm × 5 µm AFM images (bottom) showing cross-hatch surface morphology for (a) composite M-buffer (graded InAlAs + GaAs) on Ge-coated Si substrate, (b) subsequent growth of a 2 µm InP layer, and (c) region of full InP QCL device structure.
Fig. 4
Fig. 4 Pulsed optical power vs. current characteristics for a 3 mm x 40 µm device with an HR-coated back facet measured at in temperature range from 78 K to 170 K. Inset: spectrum measured at 2.40 A and 78 K.

Metrics