Abstract

We report on a splice-free erbium-doped all-fiber laser emitting over 20 W at a wavelength of 1610 nm, with a slope efficiency of 19.6 % and an overall efficiency of 18.3% with respect to the launched pump power at 976 nm. The simple cavity design takes advantage of fiber Bragg gratings written directly in the gain fiber through the polymer coating and clad-pumping from a single commercial pump diode to largely simplify the assembling process, making this cavity ideal for large-scale commercial deployment. Two single-mode and singly erbium-doped silica fibers were fabricated in-house: the first to assess the effects of a high erbium concentration (0.36 mol.% Er2O3), yielding a low efficiency of 2.5 % with respect to launched pump power, and the second to achieve the improved result mentioned above (0.03 mol.% Er2O3). Numerical simulations show the link between the performance of each cavity and ion pair-induced quenching.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped mid-infrared fiber laser with 50% slope efficiency

Yigit Ozan Aydın, Vincent Fortin, Frédéric Maes, Frédéric Jobin, Stuart D. Jackson, Réal Vallée, and Martin Bernier
Optica 4(2) 235-238 (2017)

75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, J. Lhermite, S. Février, and E. Cormier
Opt. Lett. 38(13) 2230-2232 (2013)

Watt-level erbium-doped all-fiber laser at 3.44  μm

Vincent Fortin, Frédéric Maes, Martin Bernier, Souleymane Toubou Bah, Marc D’Auteuil, and Réal Vallée
Opt. Lett. 41(3) 559-562 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36(15), 3491–3499 (1997).
    [Crossref] [PubMed]
  2. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  3. International Commission on Non-Ionizing Radiation Protection, “ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 μm,” Health Phys. 105, 271–295 (2013).
  4. H. Lin, Y. Feng, Y. Feng, P. Barua, J. Sahu, and J. Nilsson, “656 W Er-doped Yb-free large-core fiber laser,” Opt. Lett. 43(13), 3080–3083 (2018).
    [Crossref] [PubMed]
  5. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
    [Crossref]
  6. M. A. Jebali, J-N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er–Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39(13), 3974–3977 (2014).
    [Crossref] [PubMed]
  7. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
    [Crossref] [PubMed]
  8. V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.
  9. L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
    [Crossref]
  10. L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.
  11. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
    [Crossref] [PubMed]
  12. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994).
    [Crossref]
  13. L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
    [Crossref]
  14. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
    [Crossref] [PubMed]
  15. J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of pair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, 1993 OSA Technical Digest Series (Optical Society of America, 1993), paper MD19.
  16. T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.
  17. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [Crossref]
  18. M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng., “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17(21), 18887–18893 (2009).
    [Crossref]
  19. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave. Technol. 21(9), 234–250 (1991).
    [Crossref]

2018 (1)

2014 (3)

2013 (1)

International Commission on Non-Ionizing Radiation Protection, “ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 μm,” Health Phys. 105, 271–295 (2013).

2012 (1)

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

2011 (2)

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
[Crossref] [PubMed]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

2009 (1)

2007 (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

2006 (1)

1997 (1)

1994 (2)

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

1991 (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave. Technol. 21(9), 234–250 (1991).
[Crossref]

Abramski, K. M.

Antonczak, A.

Barua, P.

Bayon, J.-F.

T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.

Bernier, M.

Blixt, P.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of pair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, 1993 OSA Technical Digest Series (Optical Society of America, 1993), paper MD19.

Bubnov, M.

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Bubnov, M. M.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Burghoff, J.

Carrier, J.

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Cormier, E.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Delevaque, E.

T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.

Desrosiers, C.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Feder, K.

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.

Feng, Y.

Fevrier, S.

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Février, S.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

Frehlich, R.

Fuchs, U.

Georges, T.

T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.

Guryanov, A.

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Guryanov, A. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Hannon, S. M.

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Henderson, S. W.

Hickey, L.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Jaskorzynska, B.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of pair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, 1993 OSA Technical Digest Series (Optical Society of America, 1993), paper MD19.

Jebali, M. A.

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Kaczmarek, P.

Kotov, L. V

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Kotov, L. V.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Lamouler, P.

T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.

LaRochelle, S.

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Lhermite, J.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Likhachev, M.

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Likhachev, M. E.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Limpert, J.

Lin, H.

Lipatov, D. S.

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Maran, J-N.

Medvedkov, O.

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Medvedkov, O. I.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Miniscalco, W. J.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994).
[Crossref]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave. Technol. 21(9), 234–250 (1991).
[Crossref]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Monerie, M.

T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Morasse, B.

Nicholson, J. W.

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.

Nilsson, J.

H. Lin, Y. Feng, Y. Feng, P. Barua, J. Sahu, and J. Nilsson, “656 W Er-doped Yb-free large-core fiber laser,” Opt. Lett. 43(13), 3080–3083 (2018).
[Crossref] [PubMed]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of pair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, 1993 OSA Technical Digest Series (Optical Society of America, 1993), paper MD19.

Nolte, S.

Ortaç, B.

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Quimby, R. S.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994).
[Crossref]

Sahu, J.

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Saliminia, A.

Sheng., Y.

Sobon, G.

Sotor, J.

Supradeepa, V. R.

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.

Thomas, J.

Thompson, B.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994).
[Crossref]

Trépanier, F.

Tünnermann, A.

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Vallée, R.

Vechkanov, N. N.

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Wikszak, E.

Yashkov, M.

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

Yashkov, M. V.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Appl. Opt. (1)

Health Phys. (1)

International Commission on Non-Ionizing Radiation Protection, “ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 μm,” Health Phys. 105, 271–295 (2013).

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, and M. Lovelady, “Erbium : ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

J. Appl. Phys. (2)

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

J. Lightwave. Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave. Technol. 21(9), 234–250 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, S. Février, J. Lhermite, and E. Cormier, “Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W,” Proc. SPIE 8961, 89610X (2014).
[Crossref]

Quantum Electron. (1)

L. V Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performance cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Other (4)

L. V. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, M. Yashkov, A. Guryanov, S. Fevrier, J. Lhermite, and E. Cormier, “Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40 % and output power of 75 W,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ_8_2.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of pair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, 1993 OSA Technical Digest Series (Optical Society of America, 1993), paper MD19.

T. Georges, E. Delevaque, M. Monerie, P. Lamouler, and J.-F. Bayon, “Pair induced quenching in erbium doped silicate fibres,” in Optical Amplifiers and Their Applications, 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper WE4.

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical microscope pictures of the cross-section of fiber 1 (left) and fiber 2 (right).
Fig. 2
Fig. 2 Laser cavity design used for this work. HR and LR respectively designate a highly-reflective or lowly-reflective fiber Bragg grating. The entrance fiber (blue) is the pigtail of the pump diode.
Fig. 3
Fig. 3 Slope efficiency with respect to launched pump power obtained with different laser cavity configurations using fiber 2. Both simulated and experimental results (non-exhaustive) are presented, for varying values of cavity length and LR-FBG reflectivity. These tests were carried out at pump powers under 30 W.
Fig. 4
Fig. 4 Output power at the signal (1610 nm, left) and pump (967 nm, right) wavelengths as a function of launched pump power for the laser cavity built with fiber 1. Slope efficiency with respect to both absorbed and launched pump power is identified. The results obtained from simulations (red dotted line) agree well with the experimental results.
Fig. 5
Fig. 5 Left: Spectral reflectivity of the FBGs written in the optimized cavity (fiber 2). Right: Spectrum of the laser signal emitted by this cavity for different output powers.
Fig. 6
Fig. 6 Power characterization and simulation for the cavity built with fiber 2. Points at low power were taken after heating the diode at high powers beforehand.
Fig. 7
Fig. 7 Beam quality measurement on orthogonal axes. The figure shows beam width at different positions along the optical axis of the measurement bench. The function w = a + b z + c z 2 , where w is width and z is position, is fitted to determine the M2.
Fig. 8
Fig. 8 Simulated distribution of laser gain in the final cavity made with fiber 2. The fiber is pumped from the left side.
Fig. 9
Fig. 9 Stability of the laser signal during 24 hours around 20 W. The inset zooms in on the laser during warm-up.
Fig. 10
Fig. 10 Energy diagram of the Er3+:SiO2 system, with transitions. Left are the lifetimes in Al/P silica glass [19] while right are the energy level labels. GSA and ESA are related to the 976 nm pump, S is the laser signal at 1.55 μm, MP is rapid multi-phonon decay and ET is energy transfer. Ni are the energy levels used in the theoretical modeling.

Tables (1)

Tables Icon

Table 1 Parameters of the two fibers fabricated for this experiment

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d N 4 d t = N 4 τ 4 + R ESA
d N 3 d t = N 3 τ 3 + N 4 τ 4 + R P R ESA + W 22 N 2 2
d N 2 d t = N 2 τ 2 + N 3 τ 3 W 21 2 W 22 N 2 2
N tot = N 1 + N 2 + N 3 + N 4
R P = σ P Γ P λ P h c A c ( N 1 N 3 ) P P
R ESA = σ ESA , abs Γ P λ P h c A c N 3 P P
W 21 = Γ S λ S h c A c ( σ s , em N 2 σ s , abs N 1 ) P S
2 k = N tot P N tot
N tot S = N tot N tot P
d N 2 P d t = N 2 P τ 2 + R P N 1 S N 3 S N 1 P [ R S N 2 S + R P N 1 S N 3 S ] N 2 P
N tot P = N 1 P + N 2 P
± d P P ± d z = [ Γ P ( σ P ( N 1 S + N 1 P ) + σ ESA N 3 S ) + α P ] P P ±
± d P S ± d z = [ Γ S ( σ s , ems ( N 2 S + N 2 P ) σ s , abs ( N 1 S + N 1 P ) ) α ] P S ±

Metrics