Abstract

We present a new sensing technique, termed photoacoustic radiometry (PAR), for mapping the optical attenuation properties of a sample. In PAR, laser pulses attenuated via transmission through the sample impinge on the ultrasound transducer and generate a photoacoustic (PA) signal within it. Spatial variation of the optical attenuation properties of the sample influences the amplitude of the PAR signal, providing image contrast. Performed simultaneously with pulse-echo ultrasound and PA imaging, this triplex imaging technique enables rapid characterization of samples with micrometer-resolution in a single scan. In this work, we demonstrate that the PAR technique can be easily integrated into existing PA microscopy systems, with applications in imaging biological samples and non-destructive evaluation of optically opaque materials such as silicon wafers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

Bong Jin Kang, Changhan Yoon, Jin Man Park, Jae Youn Hwang, and K. Kirk Shung
Opt. Express 23(15) 19166-19175 (2015)

Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution

Wei Song, Wei Zheng, Ruimin Liu, Riqiang Lin, Hongtao Huang, Xiaojing Gong, Shousheng Yang, Rui Zhang, and Liang Song
Biomed. Opt. Express 5(12) 4235-4241 (2014)

Pure optical photoacoustic microscopy

Zhixing Xie, Sung-Liang Chen, Tao Ling, L. Jay Guo, Paul L. Carson, and Xueding Wang
Opt. Express 19(10) 9027-9034 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  2. S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
    [Crossref]
  3. U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
    [Crossref]
  4. E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quant. 22, 6801215 (2016).
  5. J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
    [Crossref] [PubMed]
  6. R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
    [Crossref] [PubMed]
  7. A. Briggs, Acoustic Microscopy (Oxford University, 1992).
  8. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
    [Crossref] [PubMed]
  9. E. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010).
    [Crossref] [PubMed]
  10. E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
    [Crossref] [PubMed]
  11. E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
    [Crossref] [PubMed]
  12. P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
    [Crossref] [PubMed]
  13. P. Subochev, “Cost-effective imaging of optoacoustic pressure, ultrasonic scattering, and optical diffuse reflectance with improved resolution and speed,” Opt. Lett. 41(5), 1006–1009 (2016).
    [Crossref] [PubMed]
  14. P. Subochev, I. Fiks, M. Frenz, and I. Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: Feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
    [Crossref]
  15. C. F. Quate, A. Atalar, and H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review,” Proc. IEEE 67(8), 1092–1114 (1979).
    [Crossref]
  16. C. F. Quate, “Acoustic microscopy,” Trends Biochem. Sci. 2(127–N), 129 (1977).
  17. X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408–411 (1999).
    [Crossref]
  18. P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
    [Crossref] [PubMed]
  19. R. M. Martin, H. Leonhardt, and M. C. Cardoso, “DNA labeling in living cells,” Cytometry A 67(1), 45–52 (2005).
    [Crossref] [PubMed]
  20. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  21. L. Koss, Koss’ Diagnostic Cytology and Its Histopathologic Bases. (Lippincott Williams & Wilkins, 2006).
  22. K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
    [Crossref] [PubMed]
  23. J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
    [Crossref] [PubMed]
  24. M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
    [Crossref] [PubMed]
  25. I. T. Young, P. W. Verbeek, and B. H. Mayall, “Characterization of chromatin distribution in cell nuclei,” Cytometry 7(5), 467–474 (1986).
    [Crossref] [PubMed]
  26. R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969).
    [PubMed]
  27. D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
    [Crossref] [PubMed]
  28. H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication (Cambridge University, 2008).
  29. L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
    [Crossref]
  30. J. Chen and I. De Wolf, “Study of damage and stress induced by backgrinding in Si wafers,” Semicond. Sci. Technol. 18(4), 261–268 (2003).
    [Crossref]
  31. M. Nikoonahad, “Recent advances in high resolution acoustic microscopy,” Contemp. Phys. 25(2), 129–158 (1984).
    [Crossref]
  32. S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
    [Crossref]
  33. D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
    [Crossref] [PubMed]
  34. G. A. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 172(1), 3–12 (1993).
    [Crossref] [PubMed]
  35. Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
    [Crossref] [PubMed]
  36. C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
    [Crossref] [PubMed]

2016 (7)

S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
[Crossref]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quant. 22, 6801215 (2016).

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

P. Subochev, I. Fiks, M. Frenz, and I. Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: Feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

P. Subochev, “Cost-effective imaging of optoacoustic pressure, ultrasonic scattering, and optical diffuse reflectance with improved resolution and speed,” Opt. Lett. 41(5), 1006–1009 (2016).
[Crossref] [PubMed]

P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
[Crossref] [PubMed]

2015 (2)

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
[Crossref] [PubMed]

D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
[Crossref] [PubMed]

2013 (3)

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

2012 (2)

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

2011 (1)

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

2010 (1)

E. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010).
[Crossref] [PubMed]

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2006 (2)

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2005 (1)

R. M. Martin, H. Leonhardt, and M. C. Cardoso, “DNA labeling in living cells,” Cytometry A 67(1), 45–52 (2005).
[Crossref] [PubMed]

2003 (1)

J. Chen and I. De Wolf, “Study of damage and stress induced by backgrinding in Si wafers,” Semicond. Sci. Technol. 18(4), 261–268 (2003).
[Crossref]

1999 (2)

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408–411 (1999).
[Crossref]

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

1997 (1)

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

1995 (1)

U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
[Crossref]

1993 (1)

G. A. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 172(1), 3–12 (1993).
[Crossref] [PubMed]

1986 (1)

I. T. Young, P. W. Verbeek, and B. H. Mayall, “Characterization of chromatin distribution in cell nuclei,” Cytometry 7(5), 467–474 (1986).
[Crossref] [PubMed]

1984 (1)

M. Nikoonahad, “Recent advances in high resolution acoustic microscopy,” Contemp. Phys. 25(2), 129–158 (1984).
[Crossref]

1980 (1)

L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
[Crossref]

1979 (2)

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

C. F. Quate, A. Atalar, and H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review,” Proc. IEEE 67(8), 1092–1114 (1979).
[Crossref]

1977 (1)

C. F. Quate, “Acoustic microscopy,” Trends Biochem. Sci. 2(127–N), 129 (1977).

1969 (1)

R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969).
[PubMed]

Allen, R. D.

R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969).
[PubMed]

Ameer-Beg, S.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Atalar, A.

C. F. Quate, A. Atalar, and H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review,” Proc. IEEE 67(8), 1092–1114 (1979).
[Crossref]

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

Bai, Y.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Barnea, I.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Berndl, E. S. L.

E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

Bernini, U.

U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
[Crossref]

Brand, S.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Briggs, G. A.

G. A. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 172(1), 3–12 (1993).
[Crossref] [PubMed]

Cardoso, M. C.

R. M. Martin, H. Leonhardt, and M. C. Cardoso, “DNA labeling in living cells,” Cytometry A 67(1), 45–52 (2005).
[Crossref] [PubMed]

Chappell, S.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Chen, J.

J. Chen and I. De Wolf, “Study of damage and stress induced by backgrinding in Si wafers,” Semicond. Sci. Technol. 18(4), 261–268 (2003).
[Crossref]

Chen, R.

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

Choi, C.

Czarnota, G. J.

E. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010).
[Crossref] [PubMed]

Czurratis, P.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Dardikman, G.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

David, G. B.

R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969).
[PubMed]

Davies, S.

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

De Wolf, I.

J. Chen and I. De Wolf, “Study of damage and stress induced by backgrinding in Si wafers,” Semicond. Sci. Technol. 18(4), 261–268 (2003).
[Crossref]

Dunn, F.

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Duschl, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Errington, R. J.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Favro, L. D.

L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
[Crossref]

Fiks, I.

P. Subochev, I. Fiks, M. Frenz, and I. Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: Feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

Fisher, J.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Frenz, M.

P. Subochev, I. Fiks, M. Frenz, and I. Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: Feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Guernth-Marschner, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Gundle, R.

G. A. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 172(1), 3–12 (1993).
[Crossref] [PubMed]

Habaza, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Heiserman, J.

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

Hoffrogge, P.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Hoy, T.

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

Jang, S.

Jeon, S.

S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
[Crossref]

Jipson, V.

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

Johnston, R. N.

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

Kim, C.

S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
[Crossref]

Kim, J.

S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
[Crossref]

Kim, K.

Kirschbaum, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quant. 22, 6801215 (2016).

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

E. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010).
[Crossref] [PubMed]

Korenstein, R.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Kuo, P. K.

L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
[Crossref]

Kwok, H. S.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408–411 (1999).
[Crossref]

Leonhardt, H.

R. M. Martin, H. Leonhardt, and M. C. Cardoso, “DNA labeling in living cells,” Cytometry A 67(1), 45–52 (2005).
[Crossref] [PubMed]

Malta, D.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Martin, R. M.

R. M. Martin, H. Leonhardt, and M. C. Cardoso, “DNA labeling in living cells,” Cytometry A 67(1), 45–52 (2005).
[Crossref] [PubMed]

Maslov, K.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Matthews, D.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Mayall, B. H.

I. T. Young, P. W. Verbeek, and B. H. Mayall, “Characterization of chromatin distribution in cell nuclei,” Cytometry 7(5), 467–474 (1986).
[Crossref] [PubMed]

Mikhailova, I.

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quant. 22, 6801215 (2016).

Mormile, P.

U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
[Crossref]

Nikoonahad, M.

M. Nikoonahad, “Recent advances in high resolution acoustic microscopy,” Contemp. Phys. 25(2), 129–158 (1984).
[Crossref]

Nitta, S.-I.

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Njoh, K. L.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Nomarski, G.

R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969).
[PubMed]

Novellino, A.

U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
[Crossref]

Ntziachristos, V.

D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
[Crossref] [PubMed]

Okawai, H.

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Omar, M.

D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
[Crossref] [PubMed]

Orlova, A.

Park, H.

Park, Y.

Patterson, L. H.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

Petzold, M.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Pouch, J. J.

L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
[Crossref]

Quate, C. F.

C. F. Quate, A. Atalar, and H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review,” Proc. IEEE 67(8), 1092–1114 (1979).
[Crossref]

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

C. F. Quate, “Acoustic microscopy,” Trends Biochem. Sci. 2(127–N), 129 (1977).

Reed, J.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Russo, P.

U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
[Crossref]

Saijo, Y.

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Sasaki, H.

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Shaked, N. T.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Shilyagina, N.

Smith, P. J.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

Soliman, D.

D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Strohm, E.

E. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010).
[Crossref] [PubMed]

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quant. 22, 6801215 (2016).

E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

Subochev, P.

Sun, X. W.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408–411 (1999).
[Crossref]

Tanaka, M.

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Temple, D.

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

Thomas, R. L.

L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
[Crossref]

Tserevelakis, G. J.

D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
[Crossref] [PubMed]

Turchin, I.

P. Subochev, I. Fiks, M. Frenz, and I. Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: Feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
[Crossref] [PubMed]

Verbeek, P. W.

I. T. Young, P. W. Verbeek, and B. H. Mayall, “Characterization of chromatin distribution in cell nuclei,” Cytometry 7(5), 467–474 (1986).
[Crossref] [PubMed]

Wang, J.

G. A. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 172(1), 3–12 (1993).
[Crossref] [PubMed]

Wang, L. V.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Wickramasinghe, H. K.

C. F. Quate, A. Atalar, and H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review,” Proc. IEEE 67(8), 1092–1114 (1979).
[Crossref]

Wiltshire, M.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

Xia, Y.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

Yao, D. K.

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

Yao, D.-K.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

Yoon, J.

Young, I. T.

I. T. Young, P. W. Verbeek, and B. H. Mayall, “Characterization of chromatin distribution in cell nuclei,” Cytometry 7(5), 467–474 (1986).
[Crossref] [PubMed]

Yun, J. P.

S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
[Crossref]

Zhang, C.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhang, Y. S.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

Zhou, Q.

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

Zloh, M.

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

Adv Sci (Weinh) (1)

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, “Photoacoustic microscopy of an integrated circuit,” Appl. Phys. Lett. 36(12), 953–954 (1980).
[Crossref]

Biomed. Opt. Express (2)

Contemp. Phys. (1)

M. Nikoonahad, “Recent advances in high resolution acoustic microscopy,” Contemp. Phys. 25(2), 129–158 (1984).
[Crossref]

Cytometry (1)

I. T. Young, P. W. Verbeek, and B. H. Mayall, “Characterization of chromatin distribution in cell nuclei,” Cytometry 7(5), 467–474 (1986).
[Crossref] [PubMed]

Cytometry A (2)

K. L. Njoh, L. H. Patterson, M. Zloh, M. Wiltshire, J. Fisher, S. Chappell, S. Ameer-Beg, Y. Bai, D. Matthews, R. J. Errington, and P. J. Smith, “Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells,” Cytometry A 69(8), 805–814 (2006).
[Crossref] [PubMed]

R. M. Martin, H. Leonhardt, and M. C. Cardoso, “DNA labeling in living cells,” Cytometry A 67(1), 45–52 (2005).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quant. (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quant. 22, 6801215 (2016).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408–411 (1999).
[Crossref]

J. Biomed. Opt. (3)

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

D. K. Yao, R. Chen, K. Maslov, Q. Zhou, and L. V. Wang, “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J. Biomed. Opt. 17(5), 056004 (2012).
[Crossref] [PubMed]

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 20504 (2013).
[Crossref] [PubMed]

J. Immunol. Methods (1)

P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” J. Immunol. Methods 229(1-2), 131–139 (1999).
[Crossref] [PubMed]

J. Mater. Process. Technol. (1)

U. Bernini, P. Mormile, A. Novellino, and P. Russo, “Photoacoustic imaging of layered microcircuits for non-destructive evaluation of sub-surface defects,” J. Mater. Process. Technol. 54(1-4), 181–185 (1995).
[Crossref]

J. Mater. Sci. (1)

S. Brand, P. Czurratis, P. Hoffrogge, D. Temple, D. Malta, J. Reed, and M. Petzold, “Extending acoustic microscopy for comprehensive failure analysis applications,” J. Mater. Sci. 22(10), 1580–1593 (2011).
[Crossref]

J. Microsc. (1)

G. A. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 172(1), 3–12 (1993).
[Crossref] [PubMed]

J. Opt.-UK. (1)

S. Jeon, J. Kim, J. P. Yun, and C. Kim, “Non-destructive photoacoustic imaging of metal surface defects,” J. Opt.-UK. 18(11), 114001 (2016).
[Crossref]

Laser Photonics Rev. (1)

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

P. Subochev, I. Fiks, M. Frenz, and I. Turchin, “Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: Feasibility study,” Laser Phys. Lett. 13(2), 025605 (2016).
[Crossref]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Photoacoustics (2)

E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

Proc. IEEE (1)

C. F. Quate, A. Atalar, and H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review,” Proc. IEEE 67(8), 1092–1114 (1979).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. N. Johnston, A. Atalar, J. Heiserman, V. Jipson, and C. F. Quate, “Acoustic microscopy: resolution of subcellular detail,” Proc. Natl. Acad. Sci. U.S.A. 76(7), 3325–3329 (1979).
[Crossref] [PubMed]

Sci. Rep. (1)

D. Soliman, G. J. Tserevelakis, M. Omar, and V. Ntziachristos, “Combining microscopy with mesoscopy using optical and optoacoustic label-free modes,” Sci. Rep. 5(1), 12902 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. Chen and I. De Wolf, “Study of damage and stress induced by backgrinding in Si wafers,” Semicond. Sci. Technol. 18(4), 261–268 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Trends Biochem. Sci. (1)

C. F. Quate, “Acoustic microscopy,” Trends Biochem. Sci. 2(127–N), 129 (1977).

Ultrasound Med. Biol. (1)

Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, and F. Dunn, “Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy,” Ultrasound Med. Biol. 23(1), 77–85 (1997).
[Crossref] [PubMed]

Z. Wiss. Mikrosk. (1)

R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969).
[PubMed]

Other (3)

H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication (Cambridge University, 2008).

L. Koss, Koss’ Diagnostic Cytology and Its Histopathologic Bases. (Lippincott Williams & Wilkins, 2006).

A. Briggs, Acoustic Microscopy (Oxford University, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) An illustration of the PAR technique. A laser pulse, having been attenuated by the sample, strikes the active element of the transducer, and produces a PAR signal at time t0. b) The typical scheme for photoacoustic signal generation. The PA signal is detected at time t1. c) The US pulse-echo signal is detected at time 2t1. d) A representative RF line acquired from a triplex scan of a permanent marker on a microscope slide. Various features of the signal, including excitation pulses from the Waveform Generator (WFG) and US pulse generator, are labelled. Multiple detections of reflected acoustic waves trapped within the transducer are denoted with subscripts. e) – g) Time-gated PAR, PA, and US signals, respectively.
Fig. 2
Fig. 2 a) Experimental system setup, consisting of a PA microscope in transmission mode, equipped with an UHF transducer. b) Amplitude of the recorded PAR signal as a function of incident laser pulse energy for direct transducer illumination. c) Edge spread function (ESF) and the corresponding line spread function (LSF) acquired by scanning the edge of one of the elements on a USAF test target. The FWHM of the LSF is taken as the lateral resolution of the system.
Fig. 3
Fig. 3 a) Brightfield microscopy image of an etched glass bottom petri dish. The letters “P” and “A” are shown. b) Non-contact PAR scan of the same letters shown in a). Excellent contrast is observed at the edges of the etched channels. Two out-of-focus pieces of debris on the bottom of the dish are indicated with arrowheads. c) PAR image of the same region after the addition of microscope immersion oil with a refractive index similar to the glass. The etched letters are no longer visible; however, the out-of-focus pieces of debris can still be seen clearly. The scale bar in c) is 100 μm and is applicable to all images.
Fig. 4
Fig. 4 a) Differential Interference Contrast image of a CAKI-2 renal carcinoma cell. The arrowhead indicates one of three nucleoli in the nucleus, and the arrow indicates the Golgi apparatus and endoplasmic reticulum. b) Fluorescence image of the DRAQ5 stained nucleus of the cell shown in a). c) An overlay of the images in a) and b) shows localization of the fluorescence signal in the cell. d) PAR image and e) PA image of the cell in a). Both images were generated from data acquired with a single scan. Arrowheads in e) show fluctuations in the PA signal not visible in the fluorescence image. f) The overlay of the PAR and PA images agrees well with the optical microscopy overlay in c). The scale bar is 20 μm and can be applied to all images.
Fig. 5
Fig. 5 a) Optical image of the top of an integrated circuit die on a silicon wafer substrate. PAR, PA, and US images of the die simultaneously acquired with the triplex technique are shown in b) – d), respectively. Unique features specific to each image are denoted with arrows and arrowheads. b) Arrows in the PAR image show the presence of features inscribed on the bottom surface of the wafer. c) The PA image shows unique features in the metalized regions of the die surface that are not visible in the other modalities. d) The US image shows high contrast at the edges of the different materials (arrowhead), and debris on the surface of the wafer (arrows). The scale bar is 100 μm and can be applied to all images.
Fig. 6
Fig. 6 Non-contact PAR scan of a different section of the wafer shown in Fig. 5. The higher signal averaging enhances SNR and makes additional features on the surface of the dye visible. The scan region is 1 mm x 1 mm.

Metrics