Abstract

Confocal microscopes use photomultiplier tubes and hybrid detectors due to their large dynamic range, which typically exceeds the one of single-photon avalanche diodes (SPADs). The latter, due to their photon counting operation, are usually limited to an output count rate to 1/Tdead. In this paper, we present a thorough analysis, which can actually be applied to any photon counting detector, on how to extend the SPAD dynamic range by exploiting the nonlinear photon response at high count rates and for different recharge mechanisms. We applied passive, active event-driven and clock-driven (i.e. clocked, following quanta image sensor response) recharge directly to the SPADs. The photon response, photon count standard deviation, signal-to-noise ratio and dynamic range were measured and compared to models. Measurements were performed with a CMOS SPAD array targeted for image scanning microscopy, featuring best-in-class 11 V excess bias, 55% peak photon detection probability at 520 nm and >40% from 440 to 640 nm. The array features an extremely low median dark count rate below 0.05 cps/μm2 at 9 V of excess bias and 0°C. We show that active event-driven recharge provides ×75 dynamic range extension and offers novel ways for high dynamic range imaging. When compared to the clock-driven recharge and the quanta image sensor approach, the dynamic range is extended by a factor of ×12.7-26.4. Additionally, for the first time, we evaluate the influence of clock-driven recharge on the SPAD afterpulsing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

Shingo Mandai, Matthew W. Fishburn, Yuki Maruyama, and Edoardo Charbon
Opt. Express 20(6) 5849-5857 (2012)

A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

Design and characterization of a p+/n-well SPAD array in 150nm CMOS process

Hesong Xu, Lucio Pancheri, Gian-Franco Dalla Betta, and David Stoppa
Opt. Express 25(11) 12765-12778 (2017)

References

  • View by:
  • |
  • |
  • |

  1. “Hamamatsu hybrid photodetector R10467U-40 datasheet,” https://www.hamamatsu.com/resources/pdf/etd/HPD_TPMH1361E.pdf .
  2. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  3. C. J. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80, 53–54 (1988).
  4. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
    [Crossref] [PubMed]
  5. C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889–2892 (2013).
    [Crossref] [PubMed]
  6. M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40(22), 5355–5358 (2015).
    [Crossref] [PubMed]
  7. J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), 1–2 (2015).
    [Crossref]
  8. I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
    [Crossref]
  9. I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
    [Crossref] [PubMed]
  10. I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
    [Crossref] [PubMed]
  11. I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Analyzing blinking effects in super resolution localization microscopy with single-photon SPAD imagers,” in Proc. SPIE 9714 (International Society for Optics and Photonics, 2016), p. 971406.
  12. C. Bruschini, H. Homulle, and E. Charbon, “Ten years of biophotonics single-photon SPAD imager applications: retrospective and outlook,” in Proc. SPIE 10069 (International Society for Optics and Photonics, 2017), 10069–21.
  13. D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
    [Crossref]
  14. J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
    [Crossref]
  15. J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4(12), 1474 (2017).
    [Crossref]
  16. E. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Imaging and Applied Optics (OSA, 2011), p. JTuE1.
  17. E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1(9), 166–174 (2013).
    [Crossref]
  18. X. Hesong, L. Pancheri, G.-F. D. Betta, and D. Stoppa, “Design and characterization of a p+/n-well SPAD array in 150nm CMOS process,” Opt. Express 25, 77–83 (2017).
    [PubMed]
  19. D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC) (IEEE, 2012), 230–233.
    [Crossref]
  20. S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
    [Crossref] [PubMed]
  21. M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
    [Crossref] [PubMed]
  22. C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Dev. 63(1), 65–71 (2016).
    [Crossref]
  23. S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
    [Crossref]
  24. S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).
  25. E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
    [Crossref]
  26. M. W. Fishburn, “Fundamentals of CMOS single-photon avalanche diodes,” Delft University of Technology (2012).
  27. I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
    [Crossref]
  28. S. H. Lee and R. P. Gardner, “A new G-M counter dead time model,” Appl. Radiat. Isot. 53(4-5), 731–737 (2000).
    [Crossref] [PubMed]
  29. G. F. Knoll, Radiation Detection and Measurement (Wiley, 2000).
  30. S. Burri, H. Homulle, C. Bruschini, and E. Charbon, “LinoSPAD: a time-resolved 256×1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second,” in F. Berghmans and A. G. Mignani, eds. (International Society for Optics and Photonics, 2016), p. 98990D.
  31. S. Burri, C. Bruschini, and E. Charbon, “LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging,” Instruments 1(1), 6 (2017).
    [Crossref]
  32. L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
    [Crossref]
  33. S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
    [Crossref]
  34. N. Dutton, T. Al Abbas, I. Gyongy, and R. Henderson, “Extending the dynamic range of oversampled binary SPAD image sensors,” in International Image Sensor Workshop (2017).
  35. A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).
  36. D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
    [Crossref]
  37. S. H. Lee and M. Jae, “Non-Poisson counting statistics of a hybrid G–M counter dead time model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater,” Atoms 263, 46–49 (2007).
  38. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
    [Crossref] [PubMed]
  39. M. Stipčević, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuit for ultra-fast quantum cryptography,” Opt. Express 25(18), 21861–21876 (2017).
    [Crossref] [PubMed]
  40. T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
    [Crossref]
  41. E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
    [Crossref]
  42. D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
    [Crossref]
  43. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
    [Crossref]

2018 (2)

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

2017 (7)

X. Hesong, L. Pancheri, G.-F. D. Betta, and D. Stoppa, “Design and characterization of a p+/n-well SPAD array in 150nm CMOS process,” Opt. Express 25, 77–83 (2017).
[PubMed]

M. Stipčević, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuit for ultra-fast quantum cryptography,” Opt. Express 25(18), 21861–21876 (2017).
[Crossref] [PubMed]

J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4(12), 1474 (2017).
[Crossref]

S. Burri, C. Bruschini, and E. Charbon, “LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging,” Instruments 1(1), 6 (2017).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

2016 (3)

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Dev. 63(1), 65–71 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

2015 (3)

2014 (2)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

2013 (3)

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1(9), 166–174 (2013).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889–2892 (2013).
[Crossref] [PubMed]

2012 (3)

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

2010 (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

2009 (1)

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

2007 (2)

S. H. Lee and M. Jae, “Non-Poisson counting statistics of a hybrid G–M counter dead time model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater,” Atoms 263, 46–49 (2007).

S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
[Crossref] [PubMed]

2000 (1)

S. H. Lee and R. P. Gardner, “A new G-M counter dead time model,” Appl. Radiat. Isot. 53(4-5), 731–737 (2000).
[Crossref] [PubMed]

1988 (1)

C. J. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80, 53–54 (1988).

Ahrens, T.

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Al Abbas, T.

N. Dutton, T. Al Abbas, I. Gyongy, and R. Henderson, “Extending the dynamic range of oversampled binary SPAD image sensors,” in International Image Sensor Workshop (2017).

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Almer, O.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Antolovic, I. M.

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

Bellisai, S.

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

Betta, G.-F. D.

Brockherde, W.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

Bronzi, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

Bruschini, C.

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

S. Burri, C. Bruschini, and E. Charbon, “LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging,” Instruments 1(1), 6 (2017).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

Burri, S.

S. Burri, C. Bruschini, and E. Charbon, “LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging,” Instruments 1(1), 6 (2017).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

Calder, N.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

Castello, M.

Charbon, E.

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

S. Burri, C. Bruschini, and E. Charbon, “LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging,” Instruments 1(1), 6 (2017).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Dev. 63(1), 65–71 (2016).
[Crossref]

M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
[Crossref] [PubMed]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
[Crossref]

Chick, S.

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Christensen, B. G.

Coath, R.

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Dalgarno, P.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

Dalgarno, P. A.

Davies, A.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

Diaspro, A.

Duncan, R. R.

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

Durini, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

Dutton, N.

N. Dutton, T. Al Abbas, I. Gyongy, and R. Henderson, “Extending the dynamic range of oversampled binary SPAD image sensors,” in International Image Sensor Workshop (2017).

Dutton, N. A. W.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Eisele, A.

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Enderlein, J.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Fenigstein, A.

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Fishburn, M. W.

Fossum, E. R.

J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4(12), 1474 (2017).
[Crossref]

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1(9), 166–174 (2013).
[Crossref]

Freude, W.

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Funk, T.

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Gallinet, B.

Gardner, R. P.

S. H. Lee and R. P. Gardner, “A new G-M counter dead time model,” Appl. Radiat. Isot. 53(4-5), 731–737 (2000).
[Crossref] [PubMed]

Gauthier, D. J.

Gonzo, L.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Grant, L.

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Grant, L. A.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Gyongy, I.

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

N. Dutton, T. Al Abbas, I. Gyongy, and R. Henderson, “Extending the dynamic range of oversampled binary SPAD image sensors,” in International Image Sensor Workshop (2017).

Hage, B.

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Heintzmann, R.

Henderson, R.

N. Dutton, T. Al Abbas, I. Gyongy, and R. Henderson, “Extending the dynamic range of oversampled binary SPAD image sensors,” in International Image Sensor Workshop (2017).

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Henderson, R. K.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Henrion, Y.

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Hesong, X.

Hoebe, R.

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

Hoebe, R. A.

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

Huff, J.

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), 1–2 (2015).
[Crossref]

Jae, M.

S. H. Lee and M. Jae, “Non-Poisson counting statistics of a hybrid G–M counter dead time model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater,” Atoms 263, 46–49 (2007).

Kröger, J.

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Kwiat, P. G.

Lee, M.-J.

Lee, S. H.

S. H. Lee and M. Jae, “Non-Poisson counting statistics of a hybrid G–M counter dead time model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater,” Atoms 263, 46–49 (2007).

S. H. Lee and R. P. Gardner, “A new G-M counter dead time model,” Appl. Radiat. Isot. 53(4-5), 731–737 (2000).
[Crossref] [PubMed]

Leitner, T.

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Lindner, S.

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

Ma, J.

Mandai, S.

Maruyama, Y.

Masoodian, S.

Mehta, S. B.

Migdall, A. L.

Mosconi, D.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Müller, C. B.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Pancheri, L.

X. Hesong, L. Pancheri, G.-F. D. Betta, and D. Stoppa, “Design and characterization of a p+/n-well SPAD array in 150nm CMOS process,” Opt. Express 25, 77–83 (2017).
[PubMed]

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Pavia, J. M.

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

Pellegrini, S.

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Polyakov, S. V.

Rae, B.

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

Renshaw, D.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Richardson, J.

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Richardson, J. A.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Rickman, C.

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref] [PubMed]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

Sbaiz, L.

L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
[Crossref]

Schmidtke, B.

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

Sellahewa, R.

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Sheppard, C. J.

C. J. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80, 53–54 (1988).

Sheppard, C. J. R.

Sperling, J.

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Starkey, D. A.

Stipcevic, M.

Stolz, H.

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Stoppa, D.

X. Hesong, L. Pancheri, G.-F. D. Betta, and D. Stoppa, “Design and characterization of a p+/n-well SPAD array in 150nm CMOS process,” Opt. Express 25, 77–83 (2017).
[PubMed]

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Sun, P.

Susstrunk, S.

L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
[Crossref]

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

Tosi, A.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

Turchetta, R.

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Veerappan, C.

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Dev. 63(1), 65–71 (2016).
[Crossref]

Vetterli, M.

L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
[Crossref]

Vicidomini, G.

Villa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

Vogel, W.

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Webster, E. A. G.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Weyers, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

Wolf, M.

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

Yang, F.

L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
[Crossref]

Zappa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

Zhang, C.

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

Appl. Radiat. Isot. (1)

S. H. Lee and R. P. Gardner, “A new G-M counter dead time model,” Appl. Radiat. Isot. 53(4-5), 731–737 (2000).
[Crossref] [PubMed]

Atoms (1)

S. H. Lee and M. Jae, “Non-Poisson counting statistics of a hybrid G–M counter dead time model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater,” Atoms 263, 46–49 (2007).

IEEE Electron Device Lett. (3)

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-PDE, backside-illuminated SPAD in 65/40 nm 3D IC CMOS pixel with cascoded passive quenching and active recharge,” IEEE Electron Device Lett. 38(11), 1547–1550 (2017).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

IEEE J. Electron Devices Soc. (1)

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1(9), 166–174 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technol. Lett. 25(8), 776–779 (2013).
[Crossref]

IEEE Sens. J. (2)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

IEEE Trans. Electron Dev. (4)

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256x256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Dev. 65(2), 547–554 (2018).
[Crossref]

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Dev. 63(1), 65–71 (2016).
[Crossref]

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuniformity analysis of a 65-kpixel CMOS SPAD imager,” IEEE Trans. Electron Dev. 63(1), 57–64 (2016).
[Crossref]

S. Chick, R. Coath, R. Sellahewa, R. Turchetta, T. Leitner, and A. Fenigstein, “Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset,” IEEE Trans. Electron Dev. 61(8), 2725–2731 (2014).
[Crossref]

Instruments (1)

S. Burri, C. Bruschini, and E. Charbon, “LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging,” Instruments 1(1), 6 (2017).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B. Hage, “High intensity click statistics from a 10 × 10 avalanche photodiode array,” J. Phys. At. Mol. Opt. Phys. 50(21), 214003 (2017).
[Crossref]

Nat. Methods (1)

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), 1–2 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Optik (Stuttg.) (1)

C. J. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80, 53–54 (1988).

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, and E. Charbon, “SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking,” Sci. Rep. 7, 44108 (2017).
[Crossref] [PubMed]

Other (14)

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Analyzing blinking effects in super resolution localization microscopy with single-photon SPAD imagers,” in Proc. SPIE 9714 (International Society for Optics and Photonics, 2016), p. 971406.

C. Bruschini, H. Homulle, and E. Charbon, “Ten years of biophotonics single-photon SPAD imager applications: retrospective and outlook,” in Proc. SPIE 10069 (International Society for Optics and Photonics, 2017), 10069–21.

L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision camera,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2009), 1093–1096.
[Crossref]

N. Dutton, T. Al Abbas, I. Gyongy, and R. Henderson, “Extending the dynamic range of oversampled binary SPAD image sensors,” in International Image Sensor Workshop (2017).

A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. Grant, J. Richardson, and W. Freude, “185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in International Image Sensor Workshop (2011).

G. F. Knoll, Radiation Detection and Measurement (Wiley, 2000).

S. Burri, H. Homulle, C. Bruschini, and E. Charbon, “LinoSPAD: a time-resolved 256×1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second,” in F. Berghmans and A. G. Mignani, eds. (International Society for Optics and Photonics, 2016), p. 98990D.

M. W. Fishburn, “Fundamentals of CMOS single-photon avalanche diodes,” Delft University of Technology (2012).

S. Lindner, C. Zhang, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, “Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180nm CMOS for near infrared optical tomography,” in International Image Sensor Workshop (2017).

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC) (IEEE, 2012), 230–233.
[Crossref]

“Hamamatsu hybrid photodetector R10467U-40 datasheet,” https://www.hamamatsu.com/resources/pdf/etd/HPD_TPMH1361E.pdf .

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

E. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Imaging and Applied Optics (OSA, 2011), p. JTuE1.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 8.1.1–8.1.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Pixel schematic with cascode transistors to allow high VOP values. (b) Chip micrograph with external illumination. (c) Chip micrograph with SPADs operating with low quenching resistance to enable simultaneous avalanching and light emission. Light is emitted from the active area, in the pixel centers. The bright outlier on the right is a “hot” pixel.
Fig. 2
Fig. 2 Optical setups. (a) The pulsed laser is directly coupled with the SPAD array whose rising edge position in time is compared to the laser reference clock. We can estimate the jitter by creating a histogram of the time difference between these two signals. (b) A PDP setup with an integrating sphere creating uniform, dispersed light outputs for the reference photodiode and the SPAD array.
Fig. 3
Fig. 3 PDP measurements at different VEX. The peak PDP at 520 nm is 55%, while PDP is higher than 40% between 440 and 640 nm.
Fig. 4
Fig. 4 (a) DCR distribution of 7 combined chips (161 SPADs in total), at VEX = 3.3 V. Better DCR uniformity is achieved by using smaller active areas or by cooling [27]. (b) DCR reduces exponentially with temperature, but reaches a plateau at around 0°C. DCR for this device then becomes dominantly generated by band-to-band tunneling, which is less affected by cooling.
Fig. 5
Fig. 5 Schematic representation of different recharging mechanisms. In the active event-driven mode, recharge is performed after a fixed delay Tdead following a photon detection. In clock-driven mode, the SPAD is periodically recharged. The period of this recharge is Tdead. Note that the time interval between two photon detections, ∆T, can be shorter than Tdead in the clock-driven mode.
Fig. 6
Fig. 6 Measured (m) vs. detected (n) count rate responses for each pixel over the array for passive recharge, following m = n × exp(-nTdead). Up to n = 7.8 Mcps, m response curves are uniform and indicate the useful dynamic range. Tdead is between 34 and 62 ns, for VQ = 0.75 V. At higher detection rates, the measured count rates m become largely nonuniform due to differences in Tdead.
Fig. 7
Fig. 7 Measured (m) vs. detected (n) count rate responses for active event-driven and clock-driven recharge with Tdead = 250 ns and an integration time t of 100 ms. A longer Tdead than in the previously illustrated results is used to limit the recharge timing uncertainty with respect to the SPAD pulse to 2% ( ± 5/250 ns). The responses are linearized back (i.e. measured m is corrected to ñ: m->E(n)->ñ, which is plotted on the right hand scale) so as to match the detected count rate n (green). Active clock-driven recharge saturates (i.e. reaches m = 4 Mcps) at n = 44.86 Mcps, and active event-driven recharge saturates at n = 224.1 Mcps. Black and red curves show theoretical curves, whose behavior is calculated using the analytic models. The inset shows a detail of the curves with linear y axis.
Fig. 8
Fig. 8 Standard deviation σmi of the measured count number mi due to shot noise and the count saturation behavior, for active event-driven and clock-driven recharge, Tdead = 250 ns and integration time t = 100 ms. Green shows the reference, i.e. the standard deviation due to shot noise. The theoretical curves are modeled with Eqs. (3) and (4).
Fig. 9
Fig. 9 (a) Standard deviation σñi of the estimated detected count number ñi due to shot noise and the count saturation behavior, for active event-driven and clock-driven recharge, with Tdead = 250 ns and integration time t = 100 ms. We estimate ñ from m and calculate the standard deviation of ñ. (b) SNRñi (ñiñi) of the detected count number ñi, which is, for both recharge mechanisms, comparable to the classical shot noise √ñi up to n = ~1 Mcps. SNRñi is compared to a hypothetical sensor with linear response up to 1/Tdead = 4 Mcps, with a maximum SNRñi of 20log10[√(t/Tdead)] = 56 dB. The dynamic range does extend to ñmax = 7 Mcps and ñmax = 55 Mcps for clock-driven and event-driven recharge, respectively.
Fig. 10
Fig. 10 Photon inter-arrival histograms for active (a) event-driven and (b) clock-driven recharge mechanisms with Tdead = 250 ns dead time. Each curve is a histogram of the same pixel at different count rates ranging from n = 0.06 Mcps to n = 7.5 Mcps. The insets show a zoomed version of Fig. 10. The red discontinuous lines represent exponential fits to estimate afterpulsing.
Fig. 11
Fig. 11 A schematic explanation of the difference between active event-driven and clock-driven recharge. Event-driven recharge cuts all counts with ∆T<Tdead, while clock-driven recharge still contains a part of counts with ∆T<Tdead (B area).

Tables (2)

Tables Icon

Table 1 Theoretical F factors to estimate ñmax, for different recharge mechanisms and criteria. Factors are provided as F/Tdead = ñmax. Please note that Eq. (3) introduces an SNR dependent on t/Tdead, thus F (SNR decrease) for active event-driven is indicated for typical t/Tdead ratios (255 to 1023, so as to reach an 8 to 10 bit image depth).

Tables Icon

Table 2 A comparison of state-of-the-art CMOS SPAD detectors.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

SNR=20 log 10 ( n i n i )=20 log 10 ( n i ),
σ m i 2 =mt(12m T dead + m T dead 2 t )
σ m i 2 = n×t ( 1+n T dead ) 3 +( 1+ 2 3 n T dead + 1 6 ( n T dead ) 2 )× ( n T dead ) 2 ( 1+n T dead ) 4
σ m i 2 = t T dead (1 e n T dead ) e n T dead
m i E( n i ) n ˜ i ,
σ n ˜ i 2 = ( σ m i n i m i ) 2
SNR( n ˜ imax )=20 log 10 ( n ˜ imax σ n ˜ imax )=20 log 10 ( t/ T dead )3dB
DR=20 log 10 ( n ˜ imax n ˜ imin )=20 log 10 ( n ˜ imax σ DCR )=20 log 10 ( F×t/ T dead t×DCR ),
pdf(ΔT)=1 e ΔT τ for ΔT< T dead ,
occurrence= I 0 e T dead τ 1 e T dead τ (1 e ΔT τ )

Metrics