Abstract

A continuous improvement of resolution in mask-aligner lithography is sought after to meet the requirements of an ever decreasing minimum feature size in back-end processes. For periodic structures, utilizing the Talbot effect for lithography has emerged as a viable path. Here, by combining the Talbot effect with a continuous wave laser source emitting at 193 nm, we demonstrate successfully the fabrication of periodic arrays in silicon substrates with sub-micron feature sizes. The excellent coherence and the superior brilliance of this light source, compared to more traditional mercury lamps and excimer lasers as light source, enables the efficient beam shaping and a reduced minimum feature size at a fixed gap of 20 µm. We present a comprehensive study of proximity printing with this system, including simulations and selected experimental results of prints in up to the fourth Talbot plane. This printing technology can be used to manufacture optical metasurfaces, bio-sensor arrays, membranes, or microchannel plates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm

Raoul Kirner, Andreas Vetter, Dmitrijs Opalevs, Christian Gilfert, Matthias Scholz, Patrick Leisching, Toralf Scharf, Wilfried Noell, Carsten Rockstuhl, and Reinhard Voelkel
Opt. Express 26(2) 730-743 (2018)

Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect

Lorenz Stuerzebecher, Torsten Harzendorf, Uwe Vogler, Uwe D. Zeitner, and Reinhard Voelkel
Opt. Express 18(19) 19485-19494 (2010)

Extreme ultraviolet Talbot interference lithography

Wei Li and Mario C. Marconi
Opt. Express 23(20) 25532-25538 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
    [Crossref]
  2. R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).
  3. P. Rai-Choudhury, ed., Handbook of microlithography, micromachining, and microfabrication, vol. 1 of IEE materials & devices series; SPIE Press monograph (SPIE Optical Engineering, Bellingham, Wash., 1997).
  4. S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
    [Crossref]
  5. T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).
  6. M. K. Yapici and I. Farhat, “UV-LED exposure system for low-cost photolithography,” Proc. SPIE9052, Optical Microlithography XXVII, 90521T (2014).
  7. T. Weichelt, Y. Bourgin, and U. D. Zeitner, “Mask aligner lithography using laser illumination for versatile pattern generation,” Opt. Express 25, 20983–20992 (2017).
    [Crossref] [PubMed]
  8. J. Bernasconi, T. Scharf, U. Vogler, and H. P. Herzig, “High-power modular LED-based illumination systems for mask-aligner lithography,” Opt. Express 26, 11503–11512 (2018).
    [Crossref] [PubMed]
  9. R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
    [Crossref] [PubMed]
  10. H. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 39, 401–407 (1836).
  11. L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. Ser. 511, 196–205 (1881).
  12. K. Patorski, The Self-Imaging Phenomenon and its Applications, vol. 27 of Progress in Optics (Elsevier, 1989).
  13. H. Dammann, G. Groh, and M. Kock, “Restoration of faulty images of periodic objects by means of self-imaging,” Appl. Opt. 10, 1454–1455 (1971).
    [Crossref] [PubMed]
  14. K. Kodate, T. Kamiya, H. Takenaka, and H. Yanai, “Construction of photolithographic phase gratings using the Fourier image effect,” Appl. Opt. 14, 522–525 (1975).
    [Crossref] [PubMed]
  15. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
    [Crossref]
  16. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19, 10686–10691 (2011).
    [Crossref] [PubMed]
  17. T. Sato, “Talbot effect immersion lithography by self-imaging of very fine grating patterns,” J. Vac. Sci. & Technol. B 30, 06FG02 (2012).
    [Crossref]
  18. D. Thomae, J. Maaß, O. Sandfuchs, A. Gatto, and R. Brunner, “Flexible mask illumination setup for serial multipatterning in Talbot lithography,” Appl. Opt. 53, 1775–1781 (2014).
    [Crossref] [PubMed]
  19. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images I: Plane periodic objects in monochromatic light*,” J. Opt. Soc. Am. 55, 373–381 (1965).
    [Crossref]
  20. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772–778 (1967).
    [Crossref]
  21. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005), 3.
  22. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967).
    [Crossref] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics(Cambridge University, Cambridge, UK, 1999), 7.
    [Crossref]
  24. T. Sato, “Focus position and depth of two-dimensional patterning by Talbot effect lithography,” Microelectron. Eng. 123, 80–83 (2014).
    [Crossref]
  25. M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
    [Crossref]
  26. D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).
  27. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  28. T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).
  29. F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC, 2017).
    [Crossref]
  30. F. M. Dickey, Laser Beam Shaping: Theory and Techniques (CRC, 2017).
  31. A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).
  32. R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, Optical Fabrication, Testing, and Metrology III, 71020J (2008).
    [Crossref]
  33. J. W. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts & Company Publishers, 2007).
  34. R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).
  35. A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).
  36. R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).
  37. MO Exposure Optics Technical Datasheet, www.suss.com/brochures-datasheets/mo-exposure-optics.pdf .
  38. LayoutLAB V4.8, 3D Proximity Lithography Simulation, www.genisys-gmbh.de .
  39. J. Korka, “Standing waves in photoresists,” Appl. Opt. 9, 969–970 (1969).
    [Crossref]
  40. C. A. Mack, “Analytical expression for the standing wave intensity in photoresist,” Appl. Opt. 25, 1958–1961 (1986).
    [Crossref] [PubMed]
  41. C. Mack, Fundamental Principles of Optical Lithography(John Wiley & Sons, Ltd, Chichester, UK, 2007).
  42. K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
    [Crossref] [PubMed]
  43. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  44. S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
    [Crossref] [PubMed]
  45. K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
    [Crossref]
  46. Y. Bourgin, T. Käsebier, and U. D. Zeitner, “250 nm period grating transferred by proximity i-line mask-aligner lithography,” Opt. Lett. 39, 1665–1668 (2014).
  47. Y. Bourgin, D. Voigt, T. Käsebier, T. Siefke, E.-B. Kley, and U. D. Zeitner, “175 nm period grating fabricated by i-line proximity mask-aligner lithography,” Opt. Lett. 42, 3816–3819 (2017).
  48. H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
    [Crossref]

2018 (2)

2017 (3)

2016 (1)

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

2015 (4)

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

2014 (3)

2013 (1)

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

2012 (1)

T. Sato, “Talbot effect immersion lithography by self-imaging of very fine grating patterns,” J. Vac. Sci. & Technol. B 30, 06FG02 (2012).
[Crossref]

2011 (1)

2010 (1)

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

2009 (1)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

1986 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1975 (1)

1971 (1)

1969 (1)

1967 (2)

1965 (1)

1881 (1)

L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. Ser. 511, 196–205 (1881).

1836 (1)

H. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 39, 401–407 (1836).

Asayama, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Bernasconi, J.

Bich, A.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

Bitterli, R.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Born, M.

M. Born and E. Wolf, Principles of Optics(Cambridge University, Cambridge, UK, 1999), 7.
[Crossref]

Bourgin, Y.

Bramati, A.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Brener, I.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Brunner, R.

Campione, S.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Cerrina, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Chen, C.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

Cheng, Y. C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Chong, K. E.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Clube, F.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19, 10686–10691 (2011).
[Crossref] [PubMed]

Cullmann, E.

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

Dais, C.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19, 10686–10691 (2011).
[Crossref] [PubMed]

Dammann, H.

De Rooij, N.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Decker, M.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Dickey, F. M.

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC, 2017).
[Crossref]

F. M. Dickey, Laser Beam Shaping: Theory and Techniques (CRC, 2017).

Dominguez, J.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Dumouchel, C.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Eisner, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

Enami, T.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Erdmann, A.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Farhat, I.

M. K. Yapici and I. Farhat, “UV-LED exposure system for low-cost photolithography,” Proc. SPIE9052, Optical Microlithography XXVII, 90521T (2014).

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fuchs, F.

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

Gatto, A.

Gilfert, C.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005), 3.

J. W. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts & Company Publishers, 2007).

Groh, G.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Herzig, H. P.

Herzig, H.-P.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Hornung, M.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hudek, P.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

Igarashi, T.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Ishihara, T.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Isoyan, A.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

James, A.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

James, A. R.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

Jiang, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Kaenders, W.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

Kaiser, P.

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

Kakizaki, K.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Kamiya, T.

Käsebier, T.

Keeler, G. A.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

Kirner, R.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

Kivshar, Y. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Kley, E.-B.

Kock, M.

Kodate, K.

Korka, J.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kumazaki, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Kurosu, A.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Leisching, P.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

Li, R.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

Li, R. K.

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

Liu, L. J.

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

Liu, S.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Lizotte, T. E.

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC, 2017).
[Crossref]

Luk, T. S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Maaß, J.

Mack, C.

C. Mack, Fundamental Principles of Optical Lithography(John Wiley & Sons, Ltd, Chichester, UK, 2007).

Mack, C. A.

Marconi, M.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Matsunaga, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Menoni, C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Mitsuhashi, K.-I.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Mizoguchi, H.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Montgomery, W. D.

Motzek, K.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nagashima, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Neshev, D. N.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Noell, W.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

Ohta, T.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Opalevs, D.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

Partel, S.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

Patorski, K.

K. Patorski, The Self-Imaging Phenomenon and its Applications, vol. 27 of Progress in Optics (Elsevier, 1989).

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Ramanan, N.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Rank, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Rayleigh, L.

L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. Ser. 511, 196–205 (1881).

Reno, J.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

Rieck, J.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Rocca, J.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Rockstuhl, C.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

Roth, S.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Ruffieux, P.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Saito, T.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Sandfuchs, O.

Sasaki, Y.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Sato, T.

T. Sato, “Focus position and depth of two-dimensional patterning by Talbot effect lithography,” Microelectron. Eng. 123, 80–83 (2014).
[Crossref]

T. Sato, “Talbot effect immersion lithography by self-imaging of very fine grating patterns,” J. Vac. Sci. & Technol. B 30, 06FG02 (2012).
[Crossref]

Scharf, T.

J. Bernasconi, T. Scharf, U. Vogler, and H. P. Herzig, “High-power modular LED-based illumination systems for mask-aligner lithography,” Opt. Express 26, 11503–11512 (2018).
[Crossref] [PubMed]

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

Schmidt, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Scholz, M.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

Sherman, G. C.

Siefke, T.

Sinclair, M. B.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

Solak, H. H.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19, 10686–10691 (2011).
[Crossref] [PubMed]

Staude, I.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Stuerzebecher, L.

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Stuhler, J.

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

Subramania, G. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

Tada, A.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Takenaka, H.

Talbot, H.

H. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 39, 401–407 (1836).

Terashima, K.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Thomae, D.

Tomaru, H.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Tsushima, H.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

Tuennermann, A.

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

Urbanski, L.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Vaskin, A.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

Vetter, A.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

Voelkel, R.

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26, 730–743 (2018).
[Crossref] [PubMed]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, Optical Fabrication, Testing, and Metrology III, 71020J (2008).
[Crossref]

Vogler, U.

J. Bernasconi, T. Scharf, U. Vogler, and H. P. Herzig, “High-power modular LED-based illumination systems for mask-aligner lithography,” Opt. Express 26, 11503–11512 (2018).
[Crossref] [PubMed]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

Voigt, D.

Völkel, R.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Wachulak, P.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

Wang, G.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

Wang, L.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

Wang, X.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

Wang, X. Y.

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Weible, K. J.

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, Optical Fabrication, Testing, and Metrology III, 71020J (2008).
[Crossref]

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Weichelt, T.

T. Weichelt, Y. Bourgin, and U. D. Zeitner, “Mask aligner lithography using laser illumination for versatile pattern generation,” Opt. Express 25, 20983–20992 (2017).
[Crossref] [PubMed]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Winthrop, J. T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics(Cambridge University, Cambridge, UK, 1999), 7.
[Crossref]

Wolf, O.

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

Worthington, C. R.

Yanai, H.

Yapici, M. K.

M. K. Yapici and I. Farhat, “UV-LED exposure system for low-cost photolithography,” Proc. SPIE9052, Optical Microlithography XXVII, 90521T (2014).

Yoshino, M.

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

Zeitner, U. D.

T. Weichelt, Y. Bourgin, and U. D. Zeitner, “Mask aligner lithography using laser illumination for versatile pattern generation,” Opt. Express 25, 20983–20992 (2017).
[Crossref] [PubMed]

Y. Bourgin, D. Voigt, T. Käsebier, T. Siefke, E.-B. Kley, and U. D. Zeitner, “175 nm period grating fabricated by i-line proximity mask-aligner lithography,” Opt. Lett. 42, 3816–3819 (2017).

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

Y. Bourgin, T. Käsebier, and U. D. Zeitner, “250 nm period grating transferred by proximity i-line mask-aligner lithography,” Opt. Lett. 39, 1665–1668 (2014).

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Zimmermann, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

Zoberbier, R.

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

Zoppel, S.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

ACS Photonics (1)

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photonics 3, 514–519 (2016).
[Crossref]

Adv. Opt. Mater. (1)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

J. Opt. Soc. Am. (3)

J. Vac. Sci. & Technol. B (2)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. & Technol. B 27, 2931–2937 (2009).
[Crossref]

T. Sato, “Talbot effect immersion lithography by self-imaging of very fine grating patterns,” J. Vac. Sci. & Technol. B 30, 06FG02 (2012).
[Crossref]

Microelectron. Eng. (4)

T. Sato, “Focus position and depth of two-dimensional patterning by Talbot effect lithography,” Microelectron. Eng. 123, 80–83 (2014).
[Crossref]

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity lithography using 193nm excimer laser in mask aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

Nano Lett. (2)

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref] [PubMed]

S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. Reno, G. A. Keeler, I. Staude, and I. Brener, “Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators,” Nano Lett. 17, 4297–4303 (2017).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Philos. Mag. Ser. (2)

H. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 39, 401–407 (1836).

L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. Ser. 511, 196–205 (1881).

Other (20)

K. Patorski, The Self-Imaging Phenomenon and its Applications, vol. 27 of Progress in Optics (Elsevier, 1989).

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF excimer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE8683, Optical Microlithography XXVI, 86831G (2013).

M. K. Yapici and I. Farhat, “UV-LED exposure system for low-cost photolithography,” Proc. SPIE9052, Optical Microlithography XXVII, 90521T (2014).

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),”Proc. SPIE8326, Optical Microlithography XXV, 83261Y (2012).

P. Rai-Choudhury, ed., Handbook of microlithography, micromachining, and microfabrication, vol. 1 of IEE materials & devices series; SPIE Press monograph (SPIE Optical Engineering, Bellingham, Wash., 1997).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005), 3.

M. Born and E. Wolf, Principles of Optics(Cambridge University, Cambridge, UK, 1999), 7.
[Crossref]

D. Opalevs, M. Scholz, J. Stuhler, C. Gilfert, L. J. Liu, X. Y. Wang, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. K. Li, C. Chen, R. Voelkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications,” Proc. SPIE10511, Solid State Lasers XXVII: Technology and Devices, 105112C (2018).

C. Mack, Fundamental Principles of Optical Lithography(John Wiley & Sons, Ltd, Chichester, UK, 2007).

T. Saito, T. Matsunaga, K.-I. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE4346, Optical Microlithography XIV, 1229 (2001).

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC, 2017).
[Crossref]

F. M. Dickey, Laser Beam Shaping: Theory and Techniques (CRC, 2017).

A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner Talbot lithography using a 193 nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105870W(2018).

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, Optical Fabrication, Testing, and Metrology III, 71020J (2008).
[Crossref]

J. W. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts & Company Publishers, 2007).

R. Kirner, A. Vetter, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Enabling proximity mask-aligner lithography with a 193nm CW light source,” Proc. SPIE10587, Optical Microlithography XXXI, 105871F (2018).

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H.-P. Herzig, and N. De Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE6879, Photon Processing in Microelectronics and Photonics VII, 68790Q (2008).

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent 2 253 997 A2 (2009).

MO Exposure Optics Technical Datasheet, www.suss.com/brochures-datasheets/mo-exposure-optics.pdf .

LayoutLAB V4.8, 3D Proximity Lithography Simulation, www.genisys-gmbh.de .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Lateral resolution in mask-aligner lithography as a function of wavelength, according to Eq. (1). Vertical lines indicate the crucial wavelengths for mask-aligner illumination. For illustration, the resolution is shown for a gap of 20 µm (as used throughout the experiments) and 40 µm. The resolution improves for smaller wavelengths and gaps, with a value of ∼ 2 µm at a gap of 20 µm under illumination at 193 nm [9]. (b) Talbot distance zT as a function of wavelength for two relevant periods Λ, according to Eq. (8). The DOF is indicated by the color shaded areas [Eq. (13)]. The highlighted wavelengths correspond to the annotations in (a). The DOF scales with the Talbot distance for a fixed period. Accordingly, the DOF and hence the process window increases for our light source, compared to canonical high-pressure mercury lamps (g, h, and i-lines). The different Talbot distances for the emission lines of mercury lamps lead to a spectral blur for broadband illumination.
Fig. 2
Fig. 2 (a) Schematic of the CW laser source emitting at 193 nm. The light of a diode seed laser is directed through a Faraday isolator (FI) and enhanced in a tapered amplifier (TA). Behind a second FI, the frequency upconversion is performed in lithium triborate (LBO) and potassium fluoro-beryllo-borate (KBBF) nonlinear crystals. For stable operation, an active feedback control is integrated using piezo elements (PZTs). The inset shows the beam profile before homogenization. Adapted from [25]. (b) Optical setup for beam homogenization. A uniform flat-top illumination in the mask plane is obtained by using a rotating diffuser and a Köhler integrator, consisting of microlens arrays (MLAs), Fourier, and field lenses. An iris aperture is used as an illumination filter plate (IFP) to control the angular spectrum.
Fig. 3
Fig. 3 (a) Simulated and (b) measured flat-top irradiance distribution in the mask plane, with the irradiance profile along the dashed line depicted in white. The simulated pixels are convoluted with a Gaussian filter, corresponding to the size of the aperture used in the measurement. The experimentally determined non-uniformity is below 3 %. The insets show the data without filtering. (c) Simulated and (d) measured intensity distribution of the angular spectrum. The angular spectrum is retrieved in the mask plane [see Fig. 2(b)]. Due to under-filling of the MLA’s acceptance angles, individual microlens channels are visible. The maximum half-angles in (d) are below 1° (white circle). The presented data in (b) and (d) is identical to the measurements included in [31], here completed by simulation results.
Fig. 4
Fig. 4 Measured irradiance distribution in the mask plane for (a) static and (b) without diffuser. For both configurations, the formation of speckle is visible. The irradiance profile along the dashed line is depicted in white. Compared to Fig. 3(b), the uniformity is greatly diminished.
Fig. 5
Fig. 5 Simulation of the propagating field behind the mask, under (a) plane wave illumination and (b) taking the measured angular spectrum, as shown in Fig. 3(d), into account. The irradiance is plotted in the middle of the unit cell along the propagation direction. Please note the different length scales on the axes. The periodic mask design contains an open circle (diameter 0.8 µm) in an otherwise opaque square unit cell (side length 1.4 µm, indicated in gray). The profile in the Talbot plane at zT = 20 µm (along the dash-dotted line) is plotted in white. The insets show the irradiance in the Talbot plane. As expected, the circular feature shape is replicated, with a lateral blurring arising from the finite angular spectrum. The irradiance is normalized to the maximum in simulation (a).
Fig. 6
Fig. 6 Resist simulation for a proximity gap of g = 20 µm (not shown in the graph). The simulation (a) without bottom anti-reflective coating (BARC) shows irradiance hotspots arising from standing waves, while the application of a BARC (b) results in improved uniformity in the resist. The irradiance distribution along the gray dash-dotted line is plotted in white. The exposure conditions are identical to the simulation in Fig. 5(b). The graph is not to scale, please note the different length scales on the axes. The irradiance is normalized to the maximum irradiance in (a).
Fig. 7
Fig. 7 Colorized SEM images of (a) triangular and (b) quadratic structures (yellow), etched into Si. The images are taken under an angle of 30°. The chromium hardmask (colored in red) used for etching is not yet removed, and the etch depth amounts to about 800 nm. The insets show a sketch of the structures on the amplitude mask, with the white areas transparent to the illumination. The size of one unit cell is Λ = 1.97 µm (white arrows), and the side lengths of the triangles and squares are 1.20 µm (black arrows). The fabricated triangular structures in (a) possess an corner radius of ∼ 300 nm and a side length of 1.60 µm. The square structures in (b) have an corner radius of ∼ 90 nm and a side length of 1.19 µm. While the triangular structures have slightly grown in size, the size of the square structures fits well to the design.
Fig. 8
Fig. 8 Colorized SEM micrographs of (a) resist and (b) etched Si micropillars, taken under an angle of 30°. The resist openings in (a) (colored in red) correspond to the chromium hardmask in (b). The inset in (a) shows the design of the unit cell of the amplitude mask, with a period of Λ = 1.4 µm (white arrow) and a diameter of 0.8 µm (black arrow).
Fig. 9
Fig. 9 Colorized SEM micrographs of periodic arrays in the photoresist, patterned in the (a) second, (b) third, and (c) fourth Talbot plane. The corresponding periods are Λ2 = 0.99 µm, Λ3 = 0.81 µm, and Λ4 = 0.71 µm, respectively. While the openings (blue) for the second Talbot plane are fully open after development, in the third and fourth Talbot plane the structures are not developed through.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Resolution ~ λ g .
a n = n 1 a 1 + n 2 a 2
p ( r ) = n P n exp ( 2 π i r b n ) ,
H ( | b n | , z ) = { exp [ i 2 π z λ 1 ( λ | b n | ) 2 ] , | b n | < 1 λ 0 , otherwise .
u diff ( x , y , z ) = p ˜ ( b n ; z = 0 ) H ( | b n | , z ) exp ( 2 π i r b n ) d r ,
p ˜ ( b n ; z = 0 ) = p ( r ) exp ( 2 π i r b n ) d r = n P n
exp [ i 2 π z T λ i 2 π z T λ 1 ( λ | b n | ) 2 ] ! _ _ 1 .
z T = m λ 1 1 ( λ | b n | ) 2 m .
1 ( λ | b n | ) 2 1 1 2 ( λ | b n | ) 2 .
z T 2 m Λ 2 λ .
H Frenel ( | b n | , z ) = exp [ i 2 π z λ { 1 1 2 λ 2 | b n | 2 } ] ,
DOF ± λ 2 ( NA ) 2 = ± λ 2 ( n sin θ ) 2 ,
DOF ± Λ 2 2 λ = ± z T 4 .

Metrics