Abstract

Considering the complexity and high-consumption of the existing approaches to fabricate three-dimensional (3D) regular substrate templates, the scales of the moth wings with evenly-distributed nanoarrays were discovered to provide an ideal bioscaffold for metal silver (Ag) to decorate on to fabricate a flexible, highly-ordered, low-cost and large-scale Ag nanoislands/moth wing (Ag/MW) SERS-active substrate. The grating-like substrate with the optimal morphology of rough and hierarchical Ag nanoislands exhibited high enhancement factor (EF, ~4.16 × 105), low detection limit (10−10 M) to 4-aminothiophenol (4-ATP), outstanding signal uniformity (the relative standard deviations were less than 15%) and superior identification performance in the quantitative detection of pesticide cypermethrin. The three-dimensional finite-difference time-domain (3D-FDTD) method simulated the spatial distribution of the electric field intensity in the substrates with different morphologies, showing a potential strong enhancement of Raman signals in sub-10 nm gaps between two adjacent Ag nanoislands of different layers. These prominent SERS properties of novel Ag/MW SERS-active substrates suggest their potential value in rapid on-side biological and chemical sensing. Meanwhile, the highly-ordered nanoarrays of moth wings provide a new idea for the preparation of regular biomimetic nanomaterials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates

Shih-Yu Fu, Yu-Kuei Hsu, Mei-Hsin Chen, Chin-Jung Chuang, Ying-Chu Chen, and Yan-Gu Lin
Opt. Express 22(12) 14617-14624 (2014)

In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology

Jing Yu, Yisheng Wei, Huijie Wang, Chao Zhang, Yunjia Wei, Minghui Wang, Baoyuan Man, and Fengcai Lei
Opt. Express 27(7) 9879-9894 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  2. T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
    [Crossref] [PubMed]
  3. K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
    [Crossref] [PubMed]
  4. X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
    [Crossref] [PubMed]
  5. Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
    [Crossref] [PubMed]
  6. Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
    [Crossref] [PubMed]
  7. J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
    [Crossref] [PubMed]
  8. H. V. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
    [Crossref] [PubMed]
  9. X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
    [Crossref]
  10. X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
    [Crossref] [PubMed]
  11. S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
    [Crossref] [PubMed]
  12. J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
    [Crossref] [PubMed]
  13. L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chem. Soc. Rev. 41(21), 7085–7107 (2012).
    [Crossref] [PubMed]
  14. H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
    [Crossref] [PubMed]
  15. W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
    [Crossref] [PubMed]
  16. C. H. Huang, H. Y. Lin, S. Chen, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors,” Opt. Express 19(12), 11441–11450 (2011).
    [Crossref] [PubMed]
  17. T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
    [Crossref] [PubMed]
  18. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  19. Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
    [Crossref]
  20. I. Tanahashi and Y. Harada, “Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings,” Nanoscale Res. Lett. 9(1), 298 (2014).
    [Crossref] [PubMed]
  21. A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
    [Crossref]
  22. Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
    [Crossref]
  23. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  24. C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
    [Crossref] [PubMed]
  25. C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
    [Crossref]
  26. X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
    [Crossref]
  27. X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
    [Crossref]
  28. G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
    [Crossref]
  29. V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
    [Crossref]
  30. C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).
  31. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  32. Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
    [Crossref]
  33. P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
    [Crossref] [PubMed]
  34. X. Wan, “Research of moth wings’ surface superhydrophobicity and fabrication of biomimetic surfaces,” Ph.D. Thesis, Jilin University, Jilin, China, 2012.
  35. M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).
  36. P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).
  37. Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
    [Crossref]
  38. Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
    [Crossref] [PubMed]
  39. Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
    [Crossref] [PubMed]
  40. Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
    [Crossref]
  41. Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
    [Crossref] [PubMed]
  42. S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
    [Crossref] [PubMed]
  43. J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
    [Crossref]
  44. F. J. García-Vidal and J. B. Pendry, “Collective theory of surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
    [Crossref] [PubMed]
  45. G. Seniutinas, G. Gervinskas, R. Verma, B. D. Gupta, F. Lapierre, P. R. Stoddart, F. Clark, S. L. McArthur, and S. Juodkazis, “Versatile SERS sensing based on black silicon,” Opt. Express 23(5), 6763–6772 (2015).
    [Crossref] [PubMed]
  46. L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
    [Crossref]
  47. G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
    [Crossref] [PubMed]
  48. G. Hong, C. Li, and L. Qi, “Facile Fabrication of Two-dimensionally ordered macroporous silver thin films and their application in molecular sensing,” Adv. Funct. Mater. 20(21), 3774–3783 (2010).
    [Crossref]
  49. M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
    [Crossref]
  50. H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
    [Crossref] [PubMed]
  51. A. Gole, S. Sainkar, and M. Sastry, “Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers,” Chem. Mater. 12(5), 1234–1239 (2000).
    [Crossref]
  52. X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
    [Crossref]
  53. P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).
  54. Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
    [Crossref]
  55. J. L. Davis and M. A. Barteau, “The interactions of oxygen with aldehydes on the Pd(111) surface,” Surf. Sci. 268(1–3), 11–24 (1992).
    [Crossref]

2018 (7)

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
[Crossref]

2017 (8)

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

2016 (4)

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

2015 (6)

Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
[Crossref]

G. Seniutinas, G. Gervinskas, R. Verma, B. D. Gupta, F. Lapierre, P. R. Stoddart, F. Clark, S. L. McArthur, and S. Juodkazis, “Versatile SERS sensing based on black silicon,” Opt. Express 23(5), 6763–6772 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

2014 (5)

I. Tanahashi and Y. Harada, “Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings,” Nanoscale Res. Lett. 9(1), 298 (2014).
[Crossref] [PubMed]

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
[Crossref]

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

2013 (7)

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
[Crossref]

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

2012 (5)

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
[Crossref] [PubMed]

L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chem. Soc. Rev. 41(21), 7085–7107 (2012).
[Crossref] [PubMed]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

2011 (1)

2010 (2)

G. Hong, C. Li, and L. Qi, “Facile Fabrication of Two-dimensionally ordered macroporous silver thin films and their application in molecular sensing,” Adv. Funct. Mater. 20(21), 3774–3783 (2010).
[Crossref]

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

2009 (1)

2008 (1)

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
[Crossref] [PubMed]

2005 (1)

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

2000 (1)

A. Gole, S. Sainkar, and M. Sastry, “Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers,” Chem. Mater. 12(5), 1234–1239 (2000).
[Crossref]

1998 (1)

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

1996 (1)

F. J. García-Vidal and J. B. Pendry, “Collective theory of surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref] [PubMed]

1992 (1)

J. L. Davis and M. A. Barteau, “The interactions of oxygen with aldehydes on the Pd(111) surface,” Surf. Sci. 268(1–3), 11–24 (1992).
[Crossref]

Bai, L.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

Barteau, M. A.

J. L. Davis and M. A. Barteau, “The interactions of oxygen with aldehydes on the Pd(111) surface,” Surf. Sci. 268(1–3), 11–24 (1992).
[Crossref]

Becucci, M.

M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
[Crossref]

Bi, N.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Bukowska, J.

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Burm, J. S.

G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
[Crossref]

Cao, W.

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Castellucci, E.

M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
[Crossref]

Chan, Y.

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Chen, C. S.

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Chen, H.

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
[Crossref] [PubMed]

Chen, L.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Chen, S.

Chen, Y.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

Chen, Z.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Cheng, X.

Chindaudom, P.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Chu, H. V.

Chu, P. K.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Chui, H. C.

Clark, F.

Crawford, R. J.

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Davis, J. L.

J. L. Davis and M. A. Barteau, “The interactions of oxygen with aldehydes on the Pd(111) surface,” Surf. Sci. 268(1–3), 11–24 (1992).
[Crossref]

Deng, L.

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

Deva, D.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Ding, F.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Ding, Y. M.

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Dolata, M.

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Dong, C.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Dong, S.

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
[Crossref] [PubMed]

Du, Y.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Dui, J.

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Eiamchai, P.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Fan, Y.

Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
[Crossref]

Fang, Y.

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

Fisk, H.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Gao, S. S.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Gao, T.

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Gao, W. T.

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Gao, X. G.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Gao, Y.

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, “Collective theory of surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref] [PubMed]

Gervinskas, G.

Gole, A.

A. Gole, S. Sainkar, and M. Sastry, “Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers,” Chem. Mater. 12(5), 1234–1239 (2000).
[Crossref]

Goodacre, R.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Graham, D.

L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chem. Soc. Rev. 41(21), 7085–7107 (2012).
[Crossref] [PubMed]

Grochala, W.

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Gu, J.

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Guerrini, L.

L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chem. Soc. Rev. 41(21), 7085–7107 (2012).
[Crossref] [PubMed]

Guo, L.

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

Guo, Z.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Gupta, B. D.

Han, H.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Harada, Y.

I. Tanahashi and Y. Harada, “Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings,” Nanoscale Res. Lett. 9(1), 298 (2014).
[Crossref] [PubMed]

Hasan, J.

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

He, G.

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Hong, G.

G. Hong, C. Li, and L. Qi, “Facile Fabrication of Two-dimensionally ordered macroporous silver thin films and their application in molecular sensing,” Adv. Funct. Mater. 20(21), 3774–3783 (2010).
[Crossref]

Horprathum, M.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Hu, J.

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Huang, C. H.

Huang, H.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Huang, Y.

Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
[Crossref]

H. V. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
[Crossref] [PubMed]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Huo, Y. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Ivanova, E. P.

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Janik-Czachor, M.

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Jeon, S. J.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Jeong, D. H.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Jeong, S.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Jia, L.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

Jiang, L.

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Jiang, S.

Jiang, S. Z.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Jiang, X.

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

Jingjun, X.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Jiwei, Q.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Jo, A.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Jung, G. B.

G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
[Crossref]

Juodkazis, S.

Kang, H.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Kanjilal, D.

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

Khosla, R.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Kim, H. C.

Kim, H. I.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Kim, J. H.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
[Crossref]

Kudelski, A.

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Kumar, P.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Lai, K.

Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
[Crossref]

Lapierre, F.

Lee, H.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Lee, H. Y.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Lee, S. T.

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

Lee, Y. S.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Li, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

G. Hong, C. Li, and L. Qi, “Facile Fabrication of Two-dimensionally ordered macroporous silver thin films and their application in molecular sensing,” Adv. Funct. Mater. 20(21), 3774–3783 (2010).
[Crossref]

Li, C. H.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Li, G.

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Li, J.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Li, J. J.

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

Li, P.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Li, Q.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Li, W.

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Li, X.

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Li, Y.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Liang, T.

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

Liang, X.

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

Limnonthakul, P.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Limwichean, S.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Lin, H. Y.

Liu, A.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Liu, A. H.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, C. Y.

Liu, D.

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Liu, H.

K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
[Crossref] [PubMed]

Liu, J.

K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
[Crossref] [PubMed]

Liu, L.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

Liu, M.

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Liu, M. J.

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

Liu, Q.

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Liu, S. S.

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Liu, X. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, Y.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

H. V. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
[Crossref] [PubMed]

Liu, Y. J.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

Liu, Z.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Lou, S.

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Lu, Y.

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Lu, Z.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Luo, L.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Luo, Q.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Lv, J.

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

Lv, M.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

Ma, W. L.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Ma, X.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Man, B.

Man, B. Y.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

McArthur, S. L.

Mei, L.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

Meng, G.

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

Ming, Y.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Mu, L. X.

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

Nageswara Rao, S. V. S.

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

Nguyen, S. H. T.

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Nuntawong, N.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Pan, X.

Park, H. K.

G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
[Crossref]

Pathak, A. P.

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

Patthanasetakul, V.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, “Collective theory of surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref] [PubMed]

Qi, H.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Qi, L.

G. Hong, C. Li, and L. Qi, “Facile Fabrication of Two-dimensionally ordered macroporous silver thin films and their application in molecular sensing,” Adv. Funct. Mater. 20(21), 3774–3783 (2010).
[Crossref]

Qian, K.

K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
[Crossref] [PubMed]

Qian, S.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Qiang, W.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Qin, M.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Qiu, H. W.

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Quan, J. M.

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Rasco, B. A.

Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
[Crossref]

Ricci, M.

M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Sainkar, S.

A. Gole, S. Sainkar, and M. Sastry, “Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers,” Chem. Mater. 12(5), 1234–1239 (2000).
[Crossref]

Sastry, M.

A. Gole, S. Sainkar, and M. Sastry, “Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers,” Chem. Mater. 12(5), 1234–1239 (2000).
[Crossref]

Seniutinas, G.

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Sharma, S. K.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

She, G. W.

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

Shen, L.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Shen, Z.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Shi, G. C.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Shi, W. S.

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

Song, D.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Song, P.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

Song, Y.

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Soni, M.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Stoddart, P. R.

Sun, L.

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Sun, X.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Sun, Z.

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

Sun, Z. C.

Supatti, A.

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Szummer, A.

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Tan, Y.

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Tanahashi, I.

I. Tanahashi and Y. Harada, “Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings,” Nanoscale Res. Lett. 9(1), 298 (2014).
[Crossref] [PubMed]

Tang, S.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Teng, H.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

Tian, Y.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Tobin, M. J.

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Trombetta, E.

M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
[Crossref]

Turner, N. J.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Tzeng, Y.

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Vendamani, V. S.

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

Venugopal Rao, S.

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

Verma, R.

Wang, A.

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

Wang, B.

X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
[Crossref]

Wang, D.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Wang, E.

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
[Crossref] [PubMed]

Wang, K.

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Wang, L.

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Wang, M.

Wang, M. L.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Wang, P.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Wang, W.

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Wang, X.

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

Wang, X. T.

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

Wang, Y.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
[Crossref]

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
[Crossref] [PubMed]

Wang, Y. H.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Wang, Y. X.

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Wang, Z.

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Webb, H. K.

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Wei, G.

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Wei, Q.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Wei, X.

X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
[Crossref]

Wen, J.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Wenqiang, L.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Westley, C.

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

Wu, A.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Wu, L.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Wu, X.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Wu, Z.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Wudeng, W.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Xu, H.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Xu, S.

Xu, S. C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Xu, W.

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Xu, Y.

Xu, Y. Y.

Xuanyi, Y.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Yan, X. Y.

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Yan, Z.

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

Yang, C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Yang, J.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Yang, J. H.

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Yang, J. K.

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

Yang, L.

K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
[Crossref] [PubMed]

Yang, S.

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Yang, T.

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

Yin, P.

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

Yin, W.

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

You, T.

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

Yu, J.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Yu, X. F.

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

Yudong, L.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Zhang, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Zhang, D.

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

Zhang, G.

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

Zhang, H.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Zhang, J.

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Zhang, L.

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Zhang, M.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

Zhang, P. Y.

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Zhang, X.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Zhang, X. L.

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Zhang, Y.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Zhang, Y. J.

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Zhang, Z.

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

Zhao, D.

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Zhao, J. W.

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

Zhao, X.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Zhao, Y.

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
[Crossref]

H. V. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
[Crossref] [PubMed]

Zheng, X.

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Zhou, S.

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

Zhu, X.

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

Zhu, Y.

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Zongqiang, C.

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (7)

X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, “Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood,” ACS Appl. Mater. Interfaces 7(18), 9965–9971 (2015).
[Crossref] [PubMed]

Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, and D. Zhang, “Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection,” ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013).
[Crossref] [PubMed]

J. K. Yang, H. Kang, H. Lee, A. Jo, S. Jeong, S. J. Jeon, H. I. Kim, H. Y. Lee, D. H. Jeong, J. H. Kim, and Y. S. Lee, “Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides,” ACS Appl. Mater. Interfaces 6(15), 12541–12549 (2014).
[Crossref] [PubMed]

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

S. Tang, Y. Li, H. Huang, P. Li, Z. Guo, Q. Luo, Z. Wang, P. K. Chu, J. Li, and X. F. Yu, “Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants,” ACS Appl. Mater. Interfaces 9(8), 7472–7480 (2017).
[Crossref] [PubMed]

W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, “Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications,” ACS Appl. Mater. Interfaces 10(1), 1297–1305 (2018).
[Crossref] [PubMed]

T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, and S. Zhou, “Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate,” ACS Appl. Mater. Interfaces 5(15), 7308–7314 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

G. Hong, C. Li, and L. Qi, “Facile Fabrication of Two-dimensionally ordered macroporous silver thin films and their application in molecular sensing,” Adv. Funct. Mater. 20(21), 3774–3783 (2010).
[Crossref]

Adv. Mat. Res. (1)

P. Limnonthakul, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically aligned Ag nanorod arrays for trace cypermethrin detection,” Adv. Mat. Res. 979, 259–262 (2014).

Alloy. Compd. (1)

X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, and Z. Sun, “J. “Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates,” Alloy. Compd. 725, 1166–1174 (2017).
[Crossref]

Anal. Chem. (1)

P. Wang, L. Wu, Z. Lu, Q. Li, W. Yin, F. Ding, and H. Han, “Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables,” Anal. Chem. 89(4), 2424–2431 (2017).
[Crossref] [PubMed]

Analyst (Lond.) (1)

K. Qian, H. Liu, L. Yang, and J. Liu, “Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene,” Analyst (Lond.) 137(20), 4644–4646 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett. 96(5), 053104 (2010).
[Crossref]

Y. Chan, C. Zhang, Z. Wu, D. Zhao, W. Wang, H. Xu, and X. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Appl. Surf. Sci. (5)

G. B. Jung, J. H. Kim, J. S. Burm, and H. K. Park, “Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications,” Appl. Surf. Sci. 273(2), 179–183 (2013).
[Crossref]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Y. H. Wang, M. L. Wang, L. Shen, X. Sun, G. C. Shi, W. L. Ma, and X. Y. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Z. Liu, Z. Yan, L. Jia, P. Song, L. Mei, L. Bai, and Y. Liu, “Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate,” Appl. Surf. Sci. 403, 29–34 (2017).
[Crossref]

Z. Li, G. Meng, T. Liang, Z. Zhang, and X. Zhu, “Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates,” Appl. Surf. Sci. 264(1), 383–390 (2013).
[Crossref]

Biol. Chem. (2)

M. Lv, H. Teng, Z. Chen, Y. Zhao, X. Zhang, L. Liu, Z. Wu, L. Liu, and H. Xu, ““Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sensor. Actuat,” Biol. Chem. 209, 820–827 (2015).

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, ““SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat,” Biol. Chem. 258, 163–171 (2018).

Chem. Mater. (1)

A. Gole, S. Sainkar, and M. Sastry, “Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers,” Chem. Mater. 12(5), 1234–1239 (2000).
[Crossref]

Chem. Soc. Rev. (1)

L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chem. Soc. Rev. 41(21), 7085–7107 (2012).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

S. H. T. Nguyen, H. K. Webb, J. Hasan, M. J. Tobin, R. J. Crawford, and E. P. Ivanova, “Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings,” Colloids Surf. B Biointerfaces 106, 126–134 (2013).
[Crossref] [PubMed]

Food Agric. Immunol. (1)

X. Wei, Y. Zhao, B. Wang, and Y. Wang, “Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue,” Food Agric. Immunol. 25(3), 364–374 (2014).
[Crossref]

J. Appl. Phys. (2)

L. Guo, C. Zhang, L. Deng, G. Zhang, H. Xu, and X. Sun, “Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering,” J. Appl. Phys. 115(21), 213101 (2014).
[Crossref]

V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak, “Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection,” J. Appl. Phys. 123(1), 014301 (2018).
[Crossref]

J. Chem. Phys. (1)

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys. 124(7), 74709 (2006).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

G. Wei, L. Wang, Z. Liu, Y. Song, L. Sun, T. Yang, and Z. Li, “DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering,” J. Phys. Chem. B 109(50), 23941–23947 (2005).
[Crossref] [PubMed]

J. Raman Spectrosc. (3)

M. Ricci, E. Trombetta, E. Castellucci, and M. Becucci, “On the SERS quantitative determination of organic dyes,” J. Raman Spectrosc. 49(6), 997–1005 (2018).
[Crossref]

H. Fisk, C. Westley, N. J. Turner, and R. Goodacre, “Achieving optimal SERS through enhanced experimental design,” J. Raman Spectrosc. 47(1), 59–66 (2016).
[Crossref] [PubMed]

X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, and Y. Tian, “High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering,” J. Raman Spectrosc. 43(10), 1374–1380 (2012).
[Crossref]

Lebensm. Wiss. Technol. (1)

Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” Lebensm. Wiss. Technol. 60(1), 352–357 (2015).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Nanoscale (1)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

I. Tanahashi and Y. Harada, “Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings,” Nanoscale Res. Lett. 9(1), 298 (2014).
[Crossref] [PubMed]

Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, “Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing,” Nanoscale Res. Lett. 8(1), 437 (2013).
[Crossref] [PubMed]

Opt. Express (7)

G. Seniutinas, G. Gervinskas, R. Verma, B. D. Gupta, F. Lapierre, P. R. Stoddart, F. Clark, S. L. McArthur, and S. Juodkazis, “Versatile SERS sensing based on black silicon,” Opt. Express 23(5), 6763–6772 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. H. Huang, H. Y. Lin, S. Chen, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors,” Opt. Express 19(12), 11441–11450 (2011).
[Crossref] [PubMed]

H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

H. V. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. J. García-Vidal and J. B. Pendry, “Collective theory of surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref] [PubMed]

Plasmonics (1)

J. Zhang, P. Y. Zhang, Y. M. Ding, X. L. Zhang, J. M. Quan, and Y. Zhu, “Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering,” Plasmonics 11(6), 1495–1504 (2016).
[Crossref]

Sci. Rep. (1)

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

T. You, X. Liang, Y. Gao, P. Yin, L. Guo, and S. Yang, “A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 278–287 (2016).
[Crossref] [PubMed]

J. Zhu, M. J. Liu, J. J. Li, X. Li, and J. W. Zhao, “Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 586–593 (2018).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices Microstruct. 52(4), 750–758 (2012).
[Crossref]

Surf. Sci. (1)

J. L. Davis and M. A. Barteau, “The interactions of oxygen with aldehydes on the Pd(111) surface,” Surf. Sci. 268(1–3), 11–24 (1992).
[Crossref]

Vib. Spectrosc. (1)

A. Kudelski, J. Bukowska, M. Janik-Czachor, W. Grochala, A. Szummer, and M. Dolata, “Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering,” Vib. Spectrosc. 16(1), 21–29 (1998).
[Crossref]

Other (1)

X. Wan, “Research of moth wings’ surface superhydrophobicity and fabrication of biomimetic surfaces,” Ph.D. Thesis, Jilin University, Jilin, China, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Graphic fabrication process for Ag nanoislands-decorated moth wings as the 3D grating-like SERS-active substrates applied in the detection of pesticide cypermethrin. Through sputtering, effective “hot spots” were formed (I) between two adjacent Ag nanoislands of different layers, (II) between nearby Ag nanoislands on the same level, (III) due to the resonances of localized surface plasmon of Ag nanoislands themselves.
Fig. 2
Fig. 2 (a-d) Top-view SEM images of Ag/MW substrates with a sputtering time range from 10 to 40 min at a fixed interval of 10 min and the corresponding enlarged SEM images were displayed in (e-h).
Fig. 3
Fig. 3 (a-d) AFM images (5 × 5 μm2) of Ag/MW substrates with different sputtering times (10, 20, 30 and 40 min). (e-h) The height information of the corresponding SERS substrates in the measurement ranges marked with white lines in a-d.
Fig. 4
Fig. 4 (a-d) 3D-FDTD models of Ag/MW substrates with different morphologies. (e-h) Spatial distributions of the electric field intensities for x-y plane around corresponding substrates in a-d.
Fig. 5
Fig. 5 (a) UV-vis absorption spectrum of Ag/MW substrates. (b) SERS spectra of 10−4 M R6G solution on Ag/MW substrates with different Ag sputtering times. (c) Comparison of signal intensities at 1650 cm−1 in b. (d) SERS spectrum of 10−2 M 4-ATP solution on Ag/MW-30 substrate and Raman spectrum of solid 4-ATP sample. (e) SERS spectra of 4-ATP solutions in various concentrations from 10−10 to 10−2 M using Ag/MW-30 substrates. (f) Signal intensities of 4-ATP from Ag/MW-30 substrates at 1437 cm−1 for different detection times.
Fig. 6
Fig. 6 (a) The linear relationship between the logarithmic concentrations of 4-ATP solutions (Log C) and the logarithmic intensities of Raman characteristic peak centered at 1437 cm−1 (Log I). (b) SERS spectra of 10−4 M 4-ATP solution obtained from 25 randomly selected positions from 5 Ag/MW-30 substrates. (c-e) Signal intensity distributions of Raman characteristic peak at 1078, 1437 and 1579 cm−1 in (b) as well as the calculated relative standard deviations (RSDs). (f) Point-by-point SERS intensity mapping (10 × 10 μm2, 1 μm step size) of 10−4 M 4-ATP measured at 1437 cm−1 on Ag/MW-30 substrate.
Fig. 7
Fig. 7 (a) Distribution of Raman characteristic peaks of cypermethrin in the SERS spectrum collected from Ag/MW-30 substrates. (b) SERS spectra of 10−3 g/L cypermethrin solution obtained from 25 randomly selected positions from Ag/MW-30 substrate. (c) SERS spectra of cypermethrin with different concentrations (from 10−10 to 10−3 g/L) absorbed onto the Ag/MW-30 substrates. (d) Linear relationship between the logarithm of cypermethrin concentrations (Log C) and logarithm of Raman peak intensities (Log I) at 1590 cm−1 in corresponding spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EF=( I surf / I bulk )×( N bulk / N surf )
N bulk =V×ρ× N A /M

Metrics