Abstract

We have recently developed the mass-polariton (MP) theory of light to describe the light propagation in transparent bulk materials [Phys. Rev. A 95, 063850 (2017) [CrossRef]  ]. The MP theory is general as it is based on the covariance principle and the fundamental conservation laws of nature. Therefore, it can be applied also to nonhomogeneous and dispersive materials. In this work, we apply the MP theory of light to describe propagation of light in step-index circular waveguides. We study the eigenmodes of the electric and magnetic fields in a waveguide and use these modes to calculate the optical force density, which is used in the optoelastic continuum dynamics (OCD) to simulate the dynamics of medium atoms in the waveguide. We show that the total momentum and angular momentum in the waveguide are carried by a coupled state of the field and the medium. In particular, we focus in the dynamics of atoms, which has not been covered in previous theories that consider only field dynamics in waveguides. We also study the elastic waves generated in the waveguide during the relaxation following from atomic displacements in the waveguide.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori
Optica 5(8) 1016-1026 (2018)

Momentum of Light in a Dielectric Medium

Peter W. Milonni and Robert W. Boyd
Adv. Opt. Photon. 2(4) 519-553 (2010)

Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M.C. Paul
Opt. Mater. Express 2(11) 1641-1654 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys.  15, 033026 (2013).
    [Crossref]
  2. K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
    [Crossref]
  3. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
    [Crossref]
  4. L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).
  5. F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
    [Crossref] [PubMed]
  6. A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5, 011039 (2015).
  7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
    [Crossref] [PubMed]
  8. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Photon. 3, 305 (2007).
    [Crossref]
  9. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
    [Crossref] [PubMed]
  10. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum, spin, and angular momentum in dispersive media,” Phys. Rev. Lett. 119, 073901 (2017).
    [Crossref] [PubMed]
  11. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons,” New J. Phys. 19, 123014 (2017).
    [Crossref]
  12. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
    [Crossref] [PubMed]
  13. D. L. Andrews and M. Babiker, The Angular Momentum of Light(Cambridge University, 2013).
  14. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011).
    [Crossref]
  15. P. W. Milonni and R. W. Boyd, “Momentum of light in a dielectric medium,” Adv. Opt. Photon. 2, 519 (2010).
    [Crossref]
  16. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161 (2011).
    [Crossref]
  17. B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).
  18. J. Dressel, K. Y. Bliokh, and F. Nori, “Spacetime algebra as a powerful tool for electromagnetism,” Phys. Rep. 589, 1 (2015).
    [Crossref]
  19. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1 (2015).
    [Crossref]
  20. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic Publishers, 1983).
  22. M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
    [Crossref]
  23. M. Partanen and J. Tulkki, “Mass-polariton theory of light in dispersive media,” Phys. Rev. A 96, 063834 (2017).
    [Crossref]
  24. M. Partanen and J. Tulkki, “Angular momentum and quantization of light in nondispersive media,” arXiv:1803.10069 (2018).
  25. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
    [Crossref]
  26. S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Phil. Trans. R. Soc. A 368, 927 (2010).
    [Crossref] [PubMed]
  27. S. M. Barnett, “Resolution of the Abraham-Minkowski dilemma,” Phys. Rev. Lett. 104, 070401 (2010).
    [Crossref] [PubMed]
  28. U. Leonhardt, “Abraham and Minkowski momenta in the optically induced motion of fluids,” Phys. Rev. A 90, 033801 (2014).
    [Crossref]
  29. I. Brevik, “Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments,” Ann. Phys. 377, 10 (2017).
    [Crossref]
  30. F. L. Kien, V. I. Balykin, and K. Hakuta, “Angular momentum of light in an optical nanofiber,” Phys. Rev. A 73, 053823 (2006).
    [Crossref]
  31. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267 (2015).
    [Crossref]
  32. A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).
  33. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media(Pergamon, 1984).
  34. J. D. Jackson, Classical Electrodynamics(Wiley, 1999).
  35. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133 (1979).
    [Crossref]
  36. C. Kittel, Introduction to Solid State Physics (Wiley, 2005).
  37. A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation(Wiley, 1994).
  38. G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook(Cambridge University, 2003).
  39. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  40. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
    [Crossref] [PubMed]
  41. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
    [Crossref] [PubMed]
  42. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
    [Crossref] [PubMed]
  43. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52 (1997).
    [Crossref] [PubMed]
  44. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
    [Crossref]
  45. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
    [Crossref]
  46. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
    [Crossref] [PubMed]
  47. H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75, 063409 (2007).
    [Crossref]
  48. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205 (1965).
    [Crossref]
  49. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123 (1970).
    [Crossref]
  50. B. H. W. S. De Jong, R. G. C. Beerkens, and P. A. van Nijnatten, “Glass," in Ullmann’s encyclopedia of industrial chemistry(Wiley, 2000).
  51. M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

2018 (1)

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
[Crossref] [PubMed]

2017 (6)

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum, spin, and angular momentum in dispersive media,” Phys. Rev. Lett. 119, 073901 (2017).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons,” New J. Phys. 19, 123014 (2017).
[Crossref]

M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
[Crossref]

M. Partanen and J. Tulkki, “Mass-polariton theory of light in dispersive media,” Phys. Rev. A 96, 063834 (2017).
[Crossref]

I. Brevik, “Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments,” Ann. Phys. 377, 10 (2017).
[Crossref]

2015 (5)

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267 (2015).
[Crossref]

J. Dressel, K. Y. Bliokh, and F. Nori, “Spacetime algebra as a powerful tool for electromagnetism,” Phys. Rep. 589, 1 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
[Crossref]

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5, 011039 (2015).

2014 (3)

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

U. Leonhardt, “Abraham and Minkowski momenta in the optically induced motion of fluids,” Phys. Rev. A 90, 033801 (2014).
[Crossref]

2013 (3)

B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys.  15, 033026 (2013).
[Crossref]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (3)

P. W. Milonni and R. W. Boyd, “Momentum of light in a dielectric medium,” Adv. Opt. Photon. 2, 519 (2010).
[Crossref]

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Phil. Trans. R. Soc. A 368, 927 (2010).
[Crossref] [PubMed]

S. M. Barnett, “Resolution of the Abraham-Minkowski dilemma,” Phys. Rev. Lett. 104, 070401 (2010).
[Crossref] [PubMed]

2007 (3)

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Photon. 3, 305 (2007).
[Crossref]

H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75, 063409 (2007).
[Crossref]

2006 (1)

F. L. Kien, V. I. Balykin, and K. Hakuta, “Angular momentum of light in an optical nanofiber,” Phys. Rev. A 73, 053823 (2006).
[Crossref]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
[Crossref]

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).

1997 (1)

1996 (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
[Crossref] [PubMed]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

1979 (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133 (1979).
[Crossref]

1970 (1)

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123 (1970).
[Crossref]

1965 (1)

Adachi, H.

H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75, 063409 (2007).
[Crossref]

Akahoshi, S.

H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75, 063409 (2007).
[Crossref]

Alexeyev, A. N.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52 (1997).
[Crossref] [PubMed]

Alpeggiani, F.

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
[Crossref] [PubMed]

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

Andrews, D. L.

D. L. Andrews and M. Babiker, The Angular Momentum of Light(Cambridge University, 2013).

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Babiker, M.

D. L. Andrews and M. Babiker, The Angular Momentum of Light(Cambridge University, 2013).

Balykin, V. I.

F. L. Kien, V. I. Balykin, and K. Hakuta, “Angular momentum of light in an optical nanofiber,” Phys. Rev. A 73, 053823 (2006).
[Crossref]

Barnett, S. M.

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Phil. Trans. R. Soc. A 368, 927 (2010).
[Crossref] [PubMed]

S. M. Barnett, “Resolution of the Abraham-Minkowski dilemma,” Phys. Rev. Lett. 104, 070401 (2010).
[Crossref] [PubMed]

Bedford, A.

A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation(Wiley, 1994).

Beerkens, R. G. C.

B. H. W. S. De Jong, R. G. C. Beerkens, and P. A. van Nijnatten, “Glass," in Ullmann’s encyclopedia of industrial chemistry(Wiley, 2000).

Bekshaev, A. Y.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum, spin, and angular momentum in dispersive media,” Phys. Rev. Lett. 119, 073901 (2017).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons,” New J. Phys. 19, 123014 (2017).
[Crossref]

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5, 011039 (2015).

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys.  15, 033026 (2013).
[Crossref]

Bliokh, K. Y.

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons,” New J. Phys. 19, 123014 (2017).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum, spin, and angular momentum in dispersive media,” Phys. Rev. Lett. 119, 073901 (2017).
[Crossref] [PubMed]

J. Dressel, K. Y. Bliokh, and F. Nori, “Spacetime algebra as a powerful tool for electromagnetism,” Phys. Rep. 589, 1 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
[Crossref]

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5, 011039 (2015).

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys.  15, 033026 (2013).
[Crossref]

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

Boyd, R. W.

Brevik, I.

I. Brevik, “Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments,” Ann. Phys. 377, 10 (2017).
[Crossref]

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133 (1979).
[Crossref]

Brückner, R.

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123 (1970).
[Crossref]

Burke, J. J.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52 (1997).
[Crossref] [PubMed]

Dressel, J.

J. Dressel, K. Y. Bliokh, and F. Nori, “Spacetime algebra as a powerful tool for electromagnetism,” Phys. Rep. 589, 1 (2015).
[Crossref]

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

Drumheller, D. S.

A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation(Wiley, 1994).

Du, L.

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Dvorkin, J.

G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook(Cambridge University, 2003).

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
[Crossref] [PubMed]

Fadeyeva, T. A.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
[Crossref] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Gregg, P.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
[Crossref] [PubMed]

Hakuta, K.

F. L. Kien, V. I. Balykin, and K. Hakuta, “Angular momentum of light in an optical nanofiber,” Phys. Rev. A 73, 053823 (2006).
[Crossref]

Häyrynen, T.

M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
[Crossref] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics(Wiley, 1999).

Jong, B. H. W. S. De

B. H. W. S. De Jong, R. G. C. Beerkens, and P. A. van Nijnatten, “Glass," in Ullmann’s encyclopedia of industrial chemistry(Wiley, 2000).

Kapany, N. S.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

Kien, F. L.

F. L. Kien, V. I. Balykin, and K. Hakuta, “Angular momentum of light in an optical nanofiber,” Phys. Rev. A 73, 053823 (2006).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, 2005).

Kristensen, P.

Kuipers, L.

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media(Pergamon, 1984).

Leonhardt, U.

U. Leonhardt, “Abraham and Minkowski momenta in the optically induced motion of fluids,” Phys. Rev. A 90, 033801 (2014).
[Crossref]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media(Pergamon, 1984).

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Loudon, R.

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Phil. Trans. R. Soc. A 368, 927 (2010).
[Crossref] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic Publishers, 1983).

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Malitson, I. H.

Man, Z.

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

Marrucci, L.

B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).

Mavko, G.

G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook(Cambridge University, 2003).

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Milonni, P. W.

Min, C.

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

Miyakawa, K.

H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75, 063409 (2007).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Photon. 3, 305 (2007).
[Crossref]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Mukerji, T.

G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook(Cambridge University, 2003).

Nieminen, T. A.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
[Crossref]

Nori, F.

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum, spin, and angular momentum in dispersive media,” Phys. Rev. Lett. 119, 073901 (2017).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons,” New J. Phys. 19, 123014 (2017).
[Crossref]

J. Dressel, K. Y. Bliokh, and F. Nori, “Spacetime algebra as a powerful tool for electromagnetism,” Phys. Rep. 589, 1 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
[Crossref]

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5, 011039 (2015).

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys.  15, 033026 (2013).
[Crossref]

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Oksanen, J.

M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161 (2011).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52 (1997).
[Crossref] [PubMed]

Partanen, M.

M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
[Crossref]

M. Partanen and J. Tulkki, “Mass-polariton theory of light in dispersive media,” Phys. Rev. A 96, 063834 (2017).
[Crossref]

M. Partanen and J. Tulkki, “Angular momentum and quantization of light in nondispersive media,” arXiv:1803.10069 (2018).

Pfeifer, R. N. C.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
[Crossref]

Picardi, M. F.

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

Piccirillo, B.

B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).

Pitaevskii, L. P.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media(Pergamon, 1984).

Ramachandran, S.

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
[Crossref]

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

Rubinsztein-Dunlop, H.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
[Crossref] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Santamato, E.

B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Simpson, N. B.

Slussarenko, S.

B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic Publishers, 1983).

Soskin, M. S.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Photon. 3, 305 (2007).
[Crossref]

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Photon. 3, 305 (2007).
[Crossref]

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011).
[Crossref]

Tulkki, J.

M. Partanen and J. Tulkki, “Mass-polariton theory of light in dispersive media,” Phys. Rev. A 96, 063834 (2017).
[Crossref]

M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
[Crossref]

M. Partanen and J. Tulkki, “Angular momentum and quantization of light in nondispersive media,” arXiv:1803.10069 (2018).

van Nijnatten, P. A.

B. H. W. S. De Jong, R. G. C. Beerkens, and P. A. van Nijnatten, “Glass," in Ullmann’s encyclopedia of industrial chemistry(Wiley, 2000).

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Volyar, A. V.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Yao, A. M.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Yuan, X.

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

Yuan, X.-C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Zhang, Y.

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

Zhu, S.

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

Adv. Opt. Photon. (2)

Ann. Phys. (1)

I. Brevik, “Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments,” Ann. Phys. 377, 10 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123 (1970).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

L. Du, Z. Man, Y. Zhang, C. Min, S. Zhu, and X. Yuan, “Manipulating orbital angular momentum of light with tailored in-plane polarization states,” Nat. Commun. 7, 41001 (2017).

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

Nat. Photon. (2)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photon. 9, 796 (2015).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Photon. 3, 305 (2007).
[Crossref]

Nature (3)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
[Crossref] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348 (1998).
[Crossref]

New J. Phys (1)

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys.  15, 033026 (2013).
[Crossref]

New J. Phys. (2)

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons,” New J. Phys. 19, 123014 (2017).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phil. Trans. R. Soc. A (1)

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Phil. Trans. R. Soc. A 368, 927 (2010).
[Crossref] [PubMed]

Phys. Rep. (3)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133 (1979).
[Crossref]

J. Dressel, K. Y. Bliokh, and F. Nori, “Spacetime algebra as a powerful tool for electromagnetism,” Phys. Rep. 589, 1 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1 (2015).
[Crossref]

Phys. Rev. A (6)

U. Leonhardt, “Abraham and Minkowski momenta in the optically induced motion of fluids,” Phys. Rev. A 90, 033801 (2014).
[Crossref]

M. Partanen, T. Häyrynen, J. Oksanen, and J. Tulkki, “Photon mass drag and the momentum of light in a medium,” Phys. Rev. A 95, 063850 (2017).
[Crossref]

M. Partanen and J. Tulkki, “Mass-polariton theory of light in dispersive media,” Phys. Rev. A 96, 063834 (2017).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593 (1996).
[Crossref] [PubMed]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Angular momentum of light in an optical nanofiber,” Phys. Rev. A 73, 053823 (2006).
[Crossref]

H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75, 063409 (2007).
[Crossref]

Phys. Rev. Lett. (6)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

S. M. Barnett, “Resolution of the Abraham-Minkowski dilemma,” Phys. Rev. Lett. 104, 070401 (2010).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Optical momentum, spin, and angular momentum in dispersive media,” Phys. Rev. Lett. 119, 073901 (2017).
[Crossref] [PubMed]

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, “Electromagnetic helicity in complex media,” Phys. Rev. Lett. 120, 243605 (2018).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5, 011039 (2015).

Rev. Mod. Phys. (1)

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197 (2007).
[Crossref]

Riv. Nuovo Cimento (1)

B. Piccirillo, S. Slussarenko, E. Santamato, and L. Marrucci, “The orbital angular momentum of light: Genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501 (2013).

Science (1)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331 (2013).
[Crossref] [PubMed]

Semicond. Phys. Quantum Electron. Optoelectron. (1)

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82 (1998).

Other (13)

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media(Pergamon, 1984).

J. D. Jackson, Classical Electrodynamics(Wiley, 1999).

C. Kittel, Introduction to Solid State Physics (Wiley, 2005).

A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation(Wiley, 1994).

G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook(Cambridge University, 2003).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

M. Partanen and J. Tulkki, “Angular momentum and quantization of light in nondispersive media,” arXiv:1803.10069 (2018).

D. L. Andrews and M. Babiker, The Angular Momentum of Light(Cambridge University, 2013).

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011).
[Crossref]

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic Publishers, 1983).

B. H. W. S. De Jong, R. G. C. Beerkens, and P. A. van Nijnatten, “Glass," in Ullmann’s encyclopedia of industrial chemistry(Wiley, 2000).

M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, and F. Nori, “Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes,” arXiv:1805.03820 (2018).

Supplementary Material (3)

NameDescription
» Visualization 1       Simulation of the mass and momentum transfer due to a temporally Gaussian TE(0,1) mode light pulse in a silica fiber
» Visualization 2       Simulation of the mass, momentum, and angular momentum transfer due to a temporally Gaussian HE(1,1) mode light pulse in a silica fiber
» Visualization 3       Simulation of the elastic relaxation dynamics after a temporally Gaussian TE(0,1) mode light pulse in a silica fiber

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the step-index circular waveguide geometry. The waveguide core with radius R has a refractive index n1 while the refractive index of the cladding layer is n2. The total length of the waveguide is L.
Fig. 2
Fig. 2 Simulation of the mass transfer due to a temporally Gaussian TE0,1 mode light pulse in a silica fiber (see also Visualization 1). (a) Simulated longitudinal atomic velocity of the MDW in the fiber as a function of position in the plane y = 0 µm. (b) Longitudinal atomic displacement in the fiber as a function of position in the plane y = 0 µm. (c) Longitudinal atomic displacement in the fiber cross section z = 0 µm just after the pulse has gone. The pulse energy is Efield = 1 µJ, the wavelength is λ0 = 1550 nm, and the duration is ∆tFWHM = 27 fs. The radius of the circular fiber core is R = λ0/2 and it is surrounded by vacuum. The dashed line shows the boundaries of the fiber.
Fig. 3
Fig. 3 Simulation of the mass transfer due to a temporally Gaussian HE1,1 mode light pulse in a silica fiber (see also Visualization 2). (a) Longitudinal atomic velocity of the MDW in the fiber as a function of position in the plane y = 0 µm. (b) Longitudinal atomic displacement in the fiber as a function of position in the plane y = 0 µm. (c) Longitudinal atomic displacement in the fiber cross section z = 0 µm just after the pulse has gone. (d) Instantaneous transverse atomic velocity of the MDW in the fiber as a function of position in the fiber cross section at the position of the pulse center at z = 0 µm. (e) Transverse atomic displacement in the fiber as a function of position in the fiber cross section z = 0 µm just after the light pulse has gone. The pulse energy is Efield = 1 µJ, the wavelength is λ0 = 1550 nm, and the duration is ∆tFWHM = 27 fs. The radius of the circular fiber core is R = λ0/2 and it is surrounded by vacuum. The dashed line shows the boundaries of the fiber.
Fig. 4
Fig. 4 Simulation of the elastic relaxation dynamics of the silica waveguide after the TE0,1 mode light pulse (see also Visualization 3). The pulse energy is Efield = 1 µJ, the wavelength is λ0 = 1550 nm, and ∆tFWHM = 27 fs. Longitudinal atomic velocity of the MDW at z = 0 µm cross section is shown at (a) t = 110 ps, (b) t = 200 ps, and (c) t = 260 ps after the pulse has gone. The radius of the circular fiber core is R = λ0/2 and it is surrounded by vacuum. The dashed line shows the fiber boundary. (d) The alternation of the elastic (kinetic and strain) energies per unit length of the fiber as a function of time. The elastic waves are gradually damped and thermalized by absorption and scattering not included in our simulations. Due to the periodic boundary conditions used in the simulation of the elastic relaxation, the interface effects at the ends of the fiber are not present.

Tables (1)

Tables Icon

Table 1 The transferred mass, the total momentum, the field’s share of the momentum, and the MDW’s share of the momentum calculated by using the MP and OCD models. The MP column shows the per photon value obtained by dividing the total quantities of the MP model with the photon number of the pulse Nph = Efield/ħω0.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ρ a ( r , t ) d 2 r a ( r , t ) d t 2 = f opt ( r , t ) + f el ( r , t )
f opt ( r , t ) = ε 0 2 E 2 n 2 + n 2 1 c 2 t E × H .
f el ( r , t ) = ( λ L + 2 μ L ) [ r a ( r , t ) ] μ L × [ × r a ( r , t ) ] ,
E MP = [ ρ MDW c 2 + 1 2 ( ε E 2 + μ H 2 ) ] d 3 r , E MDW = ρ MDW c 2 d 3 r , E field = 1 2 ( ε E 2 + μ H 2 ) d 3 r .
P MP = ( ρ a v a + E × H c 2 ) d 3 r , P MDW = ρ a v a d 3 r , P field = E × H c 2 d 3 r .
J MP = r × ( ρ a v a + E × H c 2 ) d 3 r , J MDW = r × ρ a v a d 3 r , J field = r × ( E × H c 2 ) d 3 r .
E { r < R } ( r , t ) = Re (   { i k z   h 2 [ A h J l   ( h r ) + i l ω μ 0 k z   r B J l ( h r ) ] r ^ + i k z   h 2 [ i l r A J l ( h r ) ω μ 0 k z   B h J l   ( h r ) ] ϕ ^ + A J l ( h r ) z ^ } e i l ϕ u ( k 0   ) e i [ k z   z ω ( k z   ) t ] d k 0   ) ,
H { r < R } ( r , t ) = Re (   { i k z   h 2 [ B h J l   ( h r ) i l ω ε 1   k z   r A J l ( h r ) ] r ^ + i k z   h 2 [ i l r B J l ( h r ) + ω ε 1   k z   A h J l   ( h r ) ] ϕ ^ + B J l ( h r ) z ^ } e i l ϕ u ( k 0   ) e i [ k z   z ω ( k z   ) t ] d k 0   ) ,
E { r < R } ( r , t ) = Re (   { i k z   q 2 [ C q K l   ( q r ) + i l ω μ 0 k z   r D K l ( q r ) ] r ^ i k z   q 2 [ i l r C K l ( q r ) ω μ 0 k z   D q K l   ( q r ) ] ϕ ^ + C K l ( q r ) z ^ } e i l ϕ u ( k 0   ) e i [ k z   z ω ( k z   ) t ] d k 0   ) ,
H { r < R } ( r , t ) = Re (   { i k z   q 2 [ D q K l   ( q r ) i l ω ε 2 k z   r C K l ( q r ) ] r ^ i k z   q 2 [ i l r D K l ( q r ) ω ε 2   k z   C q K l   ( q r ) ] ϕ ^ + D K l ( q r ) z ^ } e i l ϕ u ( k 0   ) e i [ k z   z ω ( k z   ) t ] d k 0   ) .
A J l ( h R ) = C K l ( q R ) ,
B J l ( h R ) = D K l ( q R ) ,
A i l k z ω μ 0 R ( 1 q 2 + 1 h 2 ) = B [ J l   ( h R ) h J l ( h R ) + K l   ( q R ) q K l ( q R ) ] ,
A [ n 1 2 J l   ( h R ) h J l ( h R ) + n 2 2 K l   ( q R ) q K l ( q R ) ] = B l k z i ω ε 0 R ( 1 q 2 + 1 h 2 ) .
( l k z k 0 R ) 2 ( 1 q 2 + 1 h 2 ) 2 = [ J l   ( h R ) h J l ( h R ) + K l   ( q R ) q K l ( q R ) ] [ n 1 2 J l   ( h R ) h J l ( h R ) + n 2 2 K l   ( q R ) q K l ( q R ) ] .
n p,eff = k z k 0 .
n g,eff = k z k 0 .
J 1 ( h R ) h R J 0 ( h R ) = K 1 ( q R ) q R K 0 ( q R ) ,
J 1 ( h R ) h R J 0 ( h R ) = n 2 2 K 1 ( q R ) n 1 2 q R K 0 ( q R ) ,
( R λ 0 ) 0 , m x 0 , m 2 π n 1 2 n 2 2 ,
J l   ( h R ) h R J l ( h R ) = ( n 1 2 + n 2 2 2 n 1 2 ) K l   ( q R ) q R K l ( q R ) ± [ ( n 1 2 n 2 2 2 n 1 2 ) 2 ( K l   ( q R ) q R K l ( q R ) ) 2 + ( l k z n 1 k 0 ) 2 ( 1 ( q R ) 2 + 1 ( h R ) 2 ) 2 ] 1 / 2 .
( R λ 0 ) 1 , m E H x 1 , m 2 π n 1 2 n 2 2 , ( R λ 0 ) 1 , m H E x 1 , m 1 2 π n 1 2 n 2 2 ,
( R λ 0 ) l , m E H x l , m 2 π n 1 2 n 2 2 , ( R λ 0 ) l , m H E z l , m 2 π n 1 2 n 2 2 ,
| J field | = π 3 / 2 k 0 R 2 c n g,eff Δ k 0 h 2 { l 2 ( ε 1 | A | 2 + μ 0 | B | 2 ) [ J l ( R h ) 2 J l 1 ( R h ) J l + 1 ( R h ) ] + sign ( l ) n p,eff c | A B | J l 1 ( R h ) J l + 1 ( R h ) } + π 3 / 2 k 0 R 2 c n g,eff Δ k 0 q 2 { 1 2 ( ε 2 | C | 2 + μ 0 | D | 2 ) [ K l ( R q ) 2 K l 1 ( R q ) K l + 1 ( R q ) ] + sign ( l ) n p,eff c | C D | K l 1 ( R q ) K l + 1 ( R q ) } ,
| J MDW | = ( n 1 2 1 ) π 3 / 2 k 0 R 2 c n g,eff Δ k 0 h 2 { l 2 ( ε 1 | A | 2 + μ 0 | B | 2 ) [ J l ( R h ) 2 J l 1 ( R h ) J l + 1 ( R h ) ] + sign ( l ) n p,eff c | A B | J l 1 ( R h ) J l + 1 ( R h ) } + ( n 2 2 1 ) π 3 / 2 k 0 R 2 c n g,eff Δ k 0 q 2 { 1 2 ( ε 2 | C | 2 + μ 0 | D | 2 ) [ K l ( R q ) 2 K l 1 ( R q ) K l + 1 ( R q ) ] + sign ( l ) n p,eff c | C D | K l 1 ( R q ) K l + 1 ( R q ) } .

Metrics