Abstract

This paper investigates the signal to interference plus noise ratio (SINR) performance of the imaging laser radar (ILR) system operating at a wavelength of 905 nm using an avalanche photodiode array under the fog condition. We analysis the glow image of the light source, which is formed by the laser spot irradiated on a standard Lambertian target. Based on the proposed theoretical model, we determine the interference due to the glow inter-channel crosstalk under different fog conditions for a targeted channel. We show that, for transmission spans less than several tens of meters the interference due to glow crosstalk is higher than the fog (light to medium) induced losses. However, for a link range longer than 21 m the glow crosstalk induced interference is lower than the heavy fog induced attenuation. The proposed system performance is evaluated by developing an experimental test bed and using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that, under different fog conditions experimental results for changing SINR levels match well with the predicted data. The results shown can be used for design optimization of the ILR system when operated under fog conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of fog on free-space optical links employing imaging receivers

Reza Nasiri Mahalati and Joseph M. Kahn
Opt. Express 20(2) 1649-1661 (2012)

Combined effect of turbulence and aerosol on free-space optical links

Jiri Libich, Joaquin Perez, Stanislav Zvanovec, Zabih Ghassemlooy, Roberto Nebuloni, and Carlo Capsoni
Appl. Opt. 56(2) 336-341 (2017)

Bistatic coherent laser radar signal-to-noise ratio

Eric P. Magee and Timothy J. Kane
Appl. Opt. 41(9) 1768-1779 (2002)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
    [Crossref] [PubMed]
  2. K. Bers, K. R. Schulz, and W. Armbruster, “Laser radar system for obstacle avoidance,” Proc. SPIE 5958, 59581J (2005).
  3. A. Matwyschuk, “Multiple-wavelength range-gated active imaging in superimposed style for moving object tracking,” Appl. Opt. 56(27), 7766–7773 (2017).
    [Crossref] [PubMed]
  4. M. M. Kleiman and N. Shiloah, “The effect of dense atmospheric environment on the performances of laser radar sensors used for collision avoidance,” Proc. SPIE 3707, 624–635 (1999).
  5. H. N. Burns, C. G. Christodoulou, and G. D. Boreman, “System design of a pulsed laser rangefinder,” Opt. Eng. 30(3), 323–329 (1991).
    [Crossref]
  6. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
    [Crossref] [PubMed]
  7. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonics Technol. Lett. 27(4), 383–386 (2015).
    [Crossref]
  8. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications – System and Channel Modelling with Matlab (CRC, 2012).
  9. M. Grabner and V. Kvicera, “The wavelength dependent model of extinction in fog and haze for free space optical communication,” Opt. Express 19(4), 3379–3386 (2011).
    [Crossref] [PubMed]
  10. M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. L. Minh, and E. Bentley, “Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions,” J. Lightwave Technol. 31(11), 1720–1726 (2013).
    [Crossref]
  11. M. Al Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43(2), 319–329 (2004).
    [Crossref]
  12. M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on Free-Space-Optical links,” J. Lightwave Technol. 32(3), 513–520 (2014).
    [Crossref]
  13. R. Nebuloni, “Empirical relationships between extinction coefficient and visibility in fog,” Appl. Opt. 44(18), 3795–3804 (2005).
    [Crossref] [PubMed]
  14. M. Uysal, C. Capsoni, Z. Ghassemlooy, A. C. Boucouvalas, and E. G. Udvary, eds., Optical Wireless Communications – An Emerging Technology (Springer, 2016).
  15. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
    [Crossref] [PubMed]
  16. G. Kim and Y. Park, “LIDAR pulse coding for high resolution range imaging at improved refresh rate,” Opt. Express 24(21), 23810–23828 (2016).
    [Crossref] [PubMed]
  17. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
    [Crossref] [PubMed]
  18. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
    [Crossref] [PubMed]
  19. S. G. Narasimhan and S. K. Nayar, “Shedding light on the weather,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, Madison, Wisconsin, 2003) 665–672.
  20. P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multi-beam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
    [Crossref]
  21. F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19(5), 055302 (2008).
    [Crossref]
  22. J. W. Giles, I. N. Bankman, R. M. Sova, T. R. Morgan, D. D. Duncan, J. A. Millard, W. J. Green, and F. J. Marcotte, “Lidar system model for use with path obscurants and experimental validation,” Appl. Opt. 47(22), 4085–4093 (2008).
    [Crossref] [PubMed]
  23. W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
    [Crossref]
  24. H. C. van de Hulst, “Light Scattering by Small Particles,” Dover Publications, New York, 1981.
  25. S. Mori and F. S. Marzano, “Microphysical characterization of free space optical link due to hydrometeor and fog effects,” Appl. Opt. 54(22), 6787–6803 (2015).
    [Crossref] [PubMed]
  26. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  27. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
    [Crossref]
  28. P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express 17(6), 4355–4359 (2009).
    [Crossref] [PubMed]
  29. M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. L. Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” IEEE 8th CSNDSP Int. Symposium, 2012.
    [Crossref]
  30. R. G. Eldridge, “Haze and fog aerosol distributions,” J. Atmos. Sci. 23(5), 605–613 (1966).
    [Crossref]
  31. J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
    [Crossref]
  32. R. M. Measures, Laser Remote Sensing: fundamentals and applications (Krieger, 1992).
  33. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, 2005).
  34. A. Ishimaru, Wave propagation and scattering in random media (Academic Press, 1978).
  35. S. Chandrasekhar, Radiative transfer (Dover Publications, 1960).
  36. R. N. Mahalati and J. M. Kahn, “Effect of fog on free-space optical links employing imaging receivers,” Opt. Express 20(2), 1649–1661 (2012).
    [Crossref] [PubMed]
  37. E. Gramsch, “Noise Characteristics of Avalanche Photodiode Arrays of the Bevel-Edge Type,” IEEE Trans. Electron Dev. 45(7), 1587–1594 (1998).
    [Crossref]
  38. H. T. Eyyuboğlu and M. Bayraktar, “SNR bounds of FSO links and its evaluation for selected beams,” J. Mod. Opt. 62(16), 1316–1322 (2015).
    [Crossref]
  39. V. Rajamani and P. Chakrabarti, “Noise Performance of an InP/InGaAs Superlattice Avalanche Photodiode,” Opt. Quantum Electron. 31(1), 69–76 (1999).
    [Crossref]
  40. W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
    [Crossref]

2018 (1)

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

2017 (2)

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

A. Matwyschuk, “Multiple-wavelength range-gated active imaging in superimposed style for moving object tracking,” Appl. Opt. 56(27), 7766–7773 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

S. Mori and F. S. Marzano, “Microphysical characterization of free space optical link due to hydrometeor and fog effects,” Appl. Opt. 54(22), 6787–6803 (2015).
[Crossref] [PubMed]

H. T. Eyyuboğlu and M. Bayraktar, “SNR bounds of FSO links and its evaluation for selected beams,” J. Mod. Opt. 62(16), 1316–1322 (2015).
[Crossref]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonics Technol. Lett. 27(4), 383–386 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (3)

2011 (1)

2009 (1)

2008 (2)

J. W. Giles, I. N. Bankman, R. M. Sova, T. R. Morgan, D. D. Duncan, J. A. Millard, W. J. Green, and F. J. Marcotte, “Lidar system model for use with path obscurants and experimental validation,” Appl. Opt. 47(22), 4085–4093 (2008).
[Crossref] [PubMed]

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19(5), 055302 (2008).
[Crossref]

2005 (2)

R. Nebuloni, “Empirical relationships between extinction coefficient and visibility in fog,” Appl. Opt. 44(18), 3795–3804 (2005).
[Crossref] [PubMed]

K. Bers, K. R. Schulz, and W. Armbruster, “Laser radar system for obstacle avoidance,” Proc. SPIE 5958, 59581J (2005).

2004 (1)

M. Al Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43(2), 319–329 (2004).
[Crossref]

2002 (2)

2001 (1)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

2000 (2)

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multi-beam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[Crossref]

1999 (2)

M. M. Kleiman and N. Shiloah, “The effect of dense atmospheric environment on the performances of laser radar sensors used for collision avoidance,” Proc. SPIE 3707, 624–635 (1999).

V. Rajamani and P. Chakrabarti, “Noise Performance of an InP/InGaAs Superlattice Avalanche Photodiode,” Opt. Quantum Electron. 31(1), 69–76 (1999).
[Crossref]

1998 (1)

E. Gramsch, “Noise Characteristics of Avalanche Photodiode Arrays of the Bevel-Edge Type,” IEEE Trans. Electron Dev. 45(7), 1587–1594 (1998).
[Crossref]

1991 (1)

H. N. Burns, C. G. Christodoulou, and G. D. Boreman, “System design of a pulsed laser rangefinder,” Opt. Eng. 30(3), 323–329 (1991).
[Crossref]

1985 (1)

1966 (1)

R. G. Eldridge, “Haze and fog aerosol distributions,” J. Atmos. Sci. 23(5), 605–613 (1966).
[Crossref]

Al Naboulsi, M.

M. Al Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43(2), 319–329 (2004).
[Crossref]

Albota, M. A.

Aoyagi, I.

Armbruster, W.

K. Bers, K. R. Schulz, and W. Armbruster, “Laser radar system for obstacle avoidance,” Proc. SPIE 5958, 59581J (2005).

Aull, B. F.

Bankman, I. N.

Bayraktar, M.

H. T. Eyyuboğlu and M. Bayraktar, “SNR bounds of FSO links and its evaluation for selected beams,” J. Mod. Opt. 62(16), 1316–1322 (2015).
[Crossref]

Belin, E.

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19(5), 055302 (2008).
[Crossref]

Bentley, E.

Bergstrom, R. W.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Bers, K.

K. Bers, K. R. Schulz, and W. Armbruster, “Laser radar system for obstacle avoidance,” Proc. SPIE 5958, 59581J (2005).

Bethea, C.

Boreman, G. D.

H. N. Burns, C. G. Christodoulou, and G. D. Boreman, “System design of a pulsed laser rangefinder,” Opt. Eng. 30(3), 323–329 (1991).
[Crossref]

Browell, E. V.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Burns, H. N.

H. N. Burns, C. G. Christodoulou, and G. D. Boreman, “System design of a pulsed laser rangefinder,” Opt. Eng. 30(3), 323–329 (1991).
[Crossref]

Carlson, R. R.

Chakrabarti, P.

V. Rajamani and P. Chakrabarti, “Noise Performance of an InP/InGaAs Superlattice Avalanche Photodiode,” Opt. Quantum Electron. 31(1), 69–76 (1999).
[Crossref]

Christodoulou, C. G.

H. N. Burns, C. G. Christodoulou, and G. D. Boreman, “System design of a pulsed laser rangefinder,” Opt. Eng. 30(3), 323–329 (1991).
[Crossref]

Corrigan, P.

Djahani, P.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multi-beam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[Crossref]

Dumont, E.

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19(5), 055302 (2008).
[Crossref]

Duncan, D. D.

Eldridge, R. G.

R. G. Eldridge, “Haze and fog aerosol distributions,” J. Atmos. Sci. 23(5), 605–613 (1966).
[Crossref]

Eyyuboglu, H. T.

H. T. Eyyuboğlu and M. Bayraktar, “SNR bounds of FSO links and its evaluation for selected beams,” J. Mod. Opt. 62(16), 1316–1322 (2015).
[Crossref]

Ferrare, R. A.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Fiser, O.

Fornel, F.

M. Al Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43(2), 319–329 (2004).
[Crossref]

Fouche, D. G.

Ghassemlooy, Z.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. L. Minh, and E. Bentley, “Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions,” J. Lightwave Technol. 31(11), 1720–1726 (2013).
[Crossref]

Giles, J. W.

Grabner, M.

Gramsch, E.

E. Gramsch, “Noise Characteristics of Avalanche Photodiode Arrays of the Bevel-Edge Type,” IEEE Trans. Electron Dev. 45(7), 1587–1594 (1998).
[Crossref]

Green, W. J.

Grischkowsky, D.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonics Technol. Lett. 27(4), 383–386 (2015).
[Crossref]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[Crossref] [PubMed]

Gu, Z.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

Hartley, W. S.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Heinrichs, R. M.

Hobbs, P. V.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Ijaz, M.

Ismail, S.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Ito, K.

Kagami, M.

Kahn, J. M.

R. N. Mahalati and J. M. Kahn, “Effect of fog on free-space optical links employing imaging receivers,” Opt. Express 20(2), 1649–1661 (2012).
[Crossref] [PubMed]

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multi-beam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[Crossref]

Kato, S.

Kim, G.

Kim, I. I.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

Kleiman, M. M.

M. M. Kleiman and N. Shiloah, “The effect of dense atmospheric environment on the performances of laser radar sensors used for collision avoidance,” Proc. SPIE 3707, 624–635 (1999).

Klett, J. D.

Kocher, D. G.

Korevaar, E. J.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

Kvicera, V.

Lai, J.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

Li, Z.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

Liou, K. N.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Livingston, J. M.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Mahalati, R. N.

Mandehgar, M.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonics Technol. Lett. 27(4), 383–386 (2015).
[Crossref]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[Crossref] [PubMed]

Marcotte, F. J.

Martini, R.

Marzano, F. S.

Matsubara, H.

Matwyschuk, A.

McArthur, B.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

Millard, J. A.

Minh, H. L.

Mooney, J.

Morgan, T. R.

Mori, S.

Nebuloni, R.

Niclass, C.

O’Brien, M. E.

Park, Y.

Pesek, J.

Player, B. E.

Rajamani, V.

V. Rajamani and P. Chakrabarti, “Noise Performance of an InP/InGaAs Superlattice Avalanche Photodiode,” Opt. Quantum Electron. 31(1), 69–76 (1999).
[Crossref]

Redemann, J.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Russell, P. B.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Schmid, B.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Schulz, K. R.

K. Bers, K. R. Schulz, and W. Armbruster, “Laser radar system for obstacle avoidance,” Proc. SPIE 5958, 59581J (2005).

Shiloah, N.

M. M. Kleiman and N. Shiloah, “The effect of dense atmospheric environment on the performances of laser radar sensors used for collision avoidance,” Proc. SPIE 3707, 624–635 (1999).

Sizun, H.

M. Al Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43(2), 319–329 (2004).
[Crossref]

Soga, M.

Song, W.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

Sova, R. M.

Taillade, F.

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19(5), 055302 (2008).
[Crossref]

Turco, R. P.

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

Wang, C.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

Whittaker, E. A.

Willard, B. C.

Yan, W.

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

Yang, Y.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonics Technol. Lett. 27(4), 383–386 (2015).
[Crossref]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012).
[Crossref] [PubMed]

Zayhowski, J. J.

AIP Adv. (1)

W. Song, J. Lai, Z. Ghassemlooy, Z. Gu, W. Yan, C. Wang, and Z. Li, “The effect of fog on the probability density distribution of the ranging data of imaging laser radar,” AIP Adv. 8(2), 025022 (2018).
[Crossref]

Appl. Opt. (7)

S. Mori and F. S. Marzano, “Microphysical characterization of free space optical link due to hydrometeor and fog effects,” Appl. Opt. 54(22), 6787–6803 (2015).
[Crossref] [PubMed]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
[Crossref] [PubMed]

J. W. Giles, I. N. Bankman, R. M. Sova, T. R. Morgan, D. D. Duncan, J. A. Millard, W. J. Green, and F. J. Marcotte, “Lidar system model for use with path obscurants and experimental validation,” Appl. Opt. 47(22), 4085–4093 (2008).
[Crossref] [PubMed]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

A. Matwyschuk, “Multiple-wavelength range-gated active imaging in superimposed style for moving object tracking,” Appl. Opt. 56(27), 7766–7773 (2017).
[Crossref] [PubMed]

R. Nebuloni, “Empirical relationships between extinction coefficient and visibility in fog,” Appl. Opt. 44(18), 3795–3804 (2005).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photonics Technol. Lett. 27(4), 383–386 (2015).
[Crossref]

IEEE Trans. Commun. (1)

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multi-beam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[Crossref]

IEEE Trans. Electron Dev. (1)

E. Gramsch, “Noise Characteristics of Avalanche Photodiode Arrays of the Bevel-Edge Type,” IEEE Trans. Electron Dev. 45(7), 1587–1594 (1998).
[Crossref]

J. Atmos. Sci. (1)

R. G. Eldridge, “Haze and fog aerosol distributions,” J. Atmos. Sci. 23(5), 605–613 (1966).
[Crossref]

J. Geol. Res. (1)

J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geol. Res. 105(8), 9949–9970 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

H. T. Eyyuboğlu and M. Bayraktar, “SNR bounds of FSO links and its evaluation for selected beams,” J. Mod. Opt. 62(16), 1316–1322 (2015).
[Crossref]

J. Opt. (1)

W. Song, Z. Ghassemlooy, J. Lai, W. Yan, C. Wang, and Z. Li, “The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment,” J. Opt. 19(4), 045605 (2017).
[Crossref]

Meas. Sci. Technol. (1)

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19(5), 055302 (2008).
[Crossref]

Opt. Eng. (2)

M. Al Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43(2), 319–329 (2004).
[Crossref]

H. N. Burns, C. G. Christodoulou, and G. D. Boreman, “System design of a pulsed laser rangefinder,” Opt. Eng. 30(3), 323–329 (1991).
[Crossref]

Opt. Express (6)

Opt. Quantum Electron. (1)

V. Rajamani and P. Chakrabarti, “Noise Performance of an InP/InGaAs Superlattice Avalanche Photodiode,” Opt. Quantum Electron. 31(1), 69–76 (1999).
[Crossref]

Proc. SPIE (3)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

M. M. Kleiman and N. Shiloah, “The effect of dense atmospheric environment on the performances of laser radar sensors used for collision avoidance,” Proc. SPIE 3707, 624–635 (1999).

K. Bers, K. R. Schulz, and W. Armbruster, “Laser radar system for obstacle avoidance,” Proc. SPIE 5958, 59581J (2005).

Other (10)

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications – System and Channel Modelling with Matlab (CRC, 2012).

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. C. Boucouvalas, and E. G. Udvary, eds., Optical Wireless Communications – An Emerging Technology (Springer, 2016).

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. L. Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” IEEE 8th CSNDSP Int. Symposium, 2012.
[Crossref]

R. M. Measures, Laser Remote Sensing: fundamentals and applications (Krieger, 1992).

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, 2005).

A. Ishimaru, Wave propagation and scattering in random media (Academic Press, 1978).

S. Chandrasekhar, Radiative transfer (Dover Publications, 1960).

S. G. Narasimhan and S. K. Nayar, “Shedding light on the weather,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, Madison, Wisconsin, 2003) 665–672.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

H. C. van de Hulst, “Light Scattering by Small Particles,” Dover Publications, New York, 1981.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The schematic diagram of the incident light scattered by a fog droplet at an angle α.
Fig. 2
Fig. 2 Schematic diagram of 12 channels-based laser radar showing multiple scattering of the propagating beam for large remission distances and small fields of view.
Fig. 3
Fig. 3 The normalized APSF on the image plane for a low dense weather condition with T = 1.2 and a high dense weather condition with T = 4.0. Note, (d) and (h) are the cross section profiles of the corresponding APSF, respectively.
Fig. 4
Fig. 4 The simulated result of the 12 channels glows images of the light source with a rectangular shape. The forward scattering parameter q and the optical thickness T are 0.9 and 1.2, which can be represented as the light fog conditions, respectively.
Fig. 5
Fig. 5 The experimental setup of the proposed ILR system for testing the effect of fog on the 12 channels. In ILR system the Rx is between two Txs.
Fig. 6
Fig. 6 The SNR of each channel with no fog which powered by 90 V and the distance between the target and the ILR system is 15 m.
Fig. 7
Fig. 7 The SINR of channels 1 and 6 for different visibilities and the distance between the target and the ILR system of: (a) 15 m, (b) 20 m, (c) 25 m, and (d) 30m.
Fig. 8
Fig. 8 The inter-channel crosstalk (%) against the visibility for a range of the distances between the target and the ILR system of (a&e) 15 m, (b&f) 20 m, (c&g) 25 m and (d&h) 30 m, for: (a)-(d) channel 1, and (e)-(h) channel 6.
Fig. 9
Fig. 9 The captured laser spots on the target.
Fig. 10
Fig. 10 The SINR change of channel 1 as a function of the laser spot duty factor under different visibilities and the distance between the target and the ILR system of: (a) 15 m, (b) 20 m, (c) 25 m, and (d) 30m.
Fig. 11
Fig. 11 The raw echo waveforms of channel 1 of ILR system of 20 m under middle fog of V = 150 m.
Fig. 12
Fig. 12 The channel loss due to attenuation and glow crosstalk under different fog conditions: (a) the selected channel 1, and (b) the selected channel 6.

Tables (1)

Tables Icon

Table 1 The system structural parameters of the experiment laser radar

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n(r)= N 0 2π σ r r exp[ 1 2 ( ln(r) μ r σ r ) 2 ],
σ ext = 0 C ext ( 2πr λ , n ' ) n(r)dr,
σ ext = σ sca = 0 C sca ( 2πr λ , n ' ) n(r)dr,
σ ext ( λ )= 3.912 V ( λ 0.55 ) p ,
P( cosα )=P( θ,ϕ; θ ' , ϕ ' )= I( θ,ϕ ) I( θ ' , ϕ ' ) ,
cosα=cosθcos θ ' +sinθsin θ ' cos( ϕ ϕ ' ),
P( cosα )= r 1 r 2 P( cosα,r ) C sca n( r )dr r 1 r 2 C sca n( r )dr ,
P( cosα )= 1 q 2 ( 1+ q 2 2qcosα ) 3/2 ,
μ I T + 1 μ 2 T I μ =I( T,μ )+ 1 4π 0 2π 1 1 P( cosα )I( T, μ ' )d μ ' d ϕ ' ,
I( T,μ )= I 0 n=0 [ g n (T)+ g n+1 (T) ] L n ( μ ) ,
g n (T)={ 0 n=0 exp[ ( n+1 )lnT 2n+1 n ( 1 q n1 )T ] n0 ,
R=lsin( FOV 2 ) h= ρlfρ f 2 R 2 + ρ 2 l 2 ρ 2 R 2 ρ 2 + f 2 , μ( ρ )=cos[ sin 1 ( h R )+ tan 1 ( ρ f ) ] APSF( ρ )= I[ T,μ( ρ ) ] I 0 κ l 2 exp( σ ext l )
I(x,y)= I 0 (x,y)APSF(x,y), = + + I 0 ( x τ , y τ )APSF(x x τ ,y y τ )d x τ d y τ ,
σ SN 2 =2e[ M f R f P r (l)+ i D ] B PW ,
σ TN 2 = 4 k B T K B SW F N / R Y ,
σ BN 2 =4e i B B PW ,
SNR=10 log 10 ( M f 2 R f 2 P r 2 (l) 2e[ M f R f P r (l)+ i D ] B PW + 4 k B T K B SW F N / R Y +4e i B B PW ),
SINR( c i )=10 log 10 ( M f 2 R f 2 P r 2 (l) 2e[ M f R f P r (l)+ i D ] B PW + 4 k B T K B SW F N / R Y +4e i B B PW + M f 2 R f 2 ( ji P c j ) 2 )
η df = d spot d duty ×100%,
ξ attenuation =20 log 10 ( S fog N fog )20 log 10 ( S clear N clear ) (dB),
ξ glow =20 log 10 ( S glow N glow )20 log 10 ( S fog N fog ) (dB),