Abstract

Though dual soliton is used as the Stokes source in coherent anti-Stokes Raman scattering (CARS) experiments, the mechanism behind it is still not fully investigated. In this paper, dual-soliton pulses generation with a highly birefringent photonic crystal fiber (PCF) is numerically explored and experimentally verified. The simulated pulse exhibits various characteristics in the temporal and spectral domains with respect to the input linear polarization angle, and can be classified into four regions based on distances in the temporal and spectral domain of the soliton pair. By tuning input power and polarization angle, a soliton pair with desirable spectral coverage and temporal delay for CARS applications can be flexibly generated before the two solitons overlap in time domain. The simulated results are then experimentally validated by comparing their temporal and spectral characteristics. In addition, the benefit of using dual-soliton sources, such as Stokes beam, in CARS experiments is also demonstrated. The results and methods presented in this work can improve CARS spectroscopy and microscopy techniques, and may also be beneficial to other dual-wavelength source applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses

Kun Chen, Tao Wu, Haoyun Wei, Tian Zhou, and Yan Li
Biomed. Opt. Express 7(10) 3927-3939 (2016)

Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy

Kun Chen, Tao Wu, Haoyun Wei, and Yan Li
Opt. Lett. 41(11) 2628-2631 (2016)

Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths

Sangeeta Murugkar, Craig Brideau, Andrew Ridsdale, Majid Naji, Peter K. Stys, and Hanan Anis
Opt. Express 15(21) 14028-14037 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
    [Crossref] [PubMed]
  2. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36, 2387–2389 (2011).
    [Crossref] [PubMed]
  3. T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
    [Crossref]
  4. C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
    [Crossref]
  5. H. N. Paulsen, K. M. Hilligse, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-stokes raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123 (2003).
    [Crossref] [PubMed]
  6. J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
    [Crossref]
  7. Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-cars microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 1–7 (2017).
    [Crossref]
  8. J. Su, R. Xie, C. K. Johnson, and R. Hui, “Single-fiber-laser-based wavelength tunable excitation for coherent raman spectroscopy,” J. Opt. Soc. Am. B 30, 1671–1682 (2013).
    [Crossref] [PubMed]
  9. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-stokes raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
    [Crossref] [PubMed]
  10. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99, 071112 (2011).
    [Crossref]
  11. X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
    [Crossref]
  12. X. Li, Y. Wang, W. Zhang, and W. Zhao, “Experimental observation of soliton molecule evolution in yb-doped passively mode-locked fiber lasers,” Laser Phys. Lett. 11, 075103 (2014).
    [Crossref]
  13. K. Chen, T. Wu, H. Wei, and Y. Li, “Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Opt. Lett. 41, 2628–2631 (2016).
    [Crossref] [PubMed]
  14. K. Chen, T. Wu, T. Zhou, H. Wei, and Y. Li, “Cascaded Dual-Soliton Pulse Stokes for Broadband Coherent Anti-Stokes Raman Spectroscopy,” IEEE Photonics J. 8, 1–8 (2016).
  15. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref] [PubMed]
  16. K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
    [Crossref] [PubMed]
  17. P. Klarskov, A. Isomäki, K. P. Hansen, and P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19, 26672–26683 (2011).
    [Crossref]
  18. F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, G. Moltó, and A. Ferrando, “Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform,” Opt. Express 22, 23686–23693 (2014).
    [Crossref] [PubMed]
  19. P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90, 043813 (2014).
    [Crossref]
  20. A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref] [PubMed]
  21. G. P. Agrawal, Nonlinear fiber optics, 5th ed. (Elsevier/Academic Press, Amsterdam, 2013).
  22. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [Crossref]
  23. J. Hult, “A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Light. Technol. 25, 3770–3775 (2007).
    [Crossref]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  25. K. Chen, T. Wu, H. Wei, T. Zhou, and Y. Li, “Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses,” Biomed. Opt. Express 7, 3927–3939 (2016).
    [Crossref] [PubMed]
  26. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34, 2258–2260 (2009).
    [Crossref] [PubMed]
  27. M. Hofer, N. K. Balla, and S. Brasselet, “High-speed polarization-resolved coherent raman scattering imaging,” Optica 4, 795–801 (2017).
    [Crossref]
  28. F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, G. Moltó, and A. Ferrando, “Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform,” Opt. Express 22, 23686–23693 (2014).
    [Crossref] [PubMed]

2017 (3)

2016 (4)

K. Chen, T. Wu, H. Wei, T. Zhou, and Y. Li, “Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses,” Biomed. Opt. Express 7, 3927–3939 (2016).
[Crossref] [PubMed]

K. Chen, T. Wu, H. Wei, and Y. Li, “Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Opt. Lett. 41, 2628–2631 (2016).
[Crossref] [PubMed]

K. Chen, T. Wu, T. Zhou, H. Wei, and Y. Li, “Cascaded Dual-Soliton Pulse Stokes for Broadband Coherent Anti-Stokes Raman Spectroscopy,” IEEE Photonics J. 8, 1–8 (2016).

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

2015 (2)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

2014 (4)

2013 (2)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

J. Su, R. Xie, C. K. Johnson, and R. Hui, “Single-fiber-laser-based wavelength tunable excitation for coherent raman spectroscopy,” J. Opt. Soc. Am. B 30, 1671–1682 (2013).
[Crossref] [PubMed]

2012 (1)

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

2011 (3)

2009 (1)

2007 (2)

J. Hult, “A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Light. Technol. 25, 3770–3775 (2007).
[Crossref]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-stokes raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
[Crossref] [PubMed]

2006 (2)

2003 (1)

2002 (1)

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics, 5th ed. (Elsevier/Academic Press, Amsterdam, 2013).

Andersen, P. E.

Andresen, E. R.

Arteaga-Sierra, F. R.

Balla, N. K.

Baumgartl, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Berto, P.

Birkedal, V.

Bohn, B. J.

Borri, P.

Brasselet, S.

Cantrell, C. D.

Chen, K.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Ferrando, A.

Gao, C.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gottschall, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Han, Y.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Hänsch, T. W.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Hansen, K. P.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Hilligse, K. M.

Hofer, M.

Hollenbeck, D.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Hu, X.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Hui, R.

Hult, J.

J. Hult, “A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Light. Technol. 25, 3770–3775 (2007).
[Crossref]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Isomäki, A.

Jauregui, C.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Johnson, C. K.

Keiding, S. R.

Klarskov, P.

Kong, L.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-cars microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

Krafft, C.

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Langbein, W.

Larsen, J. J.

Li, C.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Li, F.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Li, X.

X. Li, Y. Wang, W. Zhang, and W. Zhao, “Experimental observation of soliton molecule evolution in yb-doped passively mode-locked fiber lasers,” Laser Phys. Lett. 11, 075103 (2014).
[Crossref]

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Li, Y.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-cars microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

K. Chen, T. Wu, T. Zhou, H. Wei, and Y. Li, “Cascaded Dual-Soliton Pulse Stokes for Broadband Coherent Anti-Stokes Raman Spectroscopy,” IEEE Photonics J. 8, 1–8 (2016).

K. Chen, T. Wu, H. Wei, and Y. Li, “Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Opt. Lett. 41, 2628–2631 (2016).
[Crossref] [PubMed]

K. Chen, T. Wu, H. Wei, T. Zhou, and Y. Li, “Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses,” Biomed. Opt. Express 7, 3927–3939 (2016).
[Crossref] [PubMed]

Limpert, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Mélen, G.

Meyer, T.

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Milián, C.

Mohler, K. J.

Moltó, G.

Nielsen, C. K.

Paulsen, H. N.

Picqué, N.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Popp, J.

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Qiu, P.

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90, 043813 (2014).
[Crossref]

Rigneault, H.

Rocha-Mendoza, I.

Sang, X.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Schie, I. W.

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Schmitt, M.

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Shen, D.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Su, J.

Tam, H. Y.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Thøgersen, J.

Torres-Cisneros, M.

Torres-Gómez, I.

Tünnermann, A.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Wai, P.-k. A.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Wang, H.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Wang, K.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90, 043813 (2014).
[Crossref]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99, 071112 (2011).
[Crossref]

Wang, X.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Wang, Y.

X. Li, Y. Wang, W. Zhang, and W. Zhao, “Experimental observation of soliton molecule evolution in yb-doped passively mode-locked fiber lasers,” Laser Phys. Lett. 11, 075103 (2014).
[Crossref]

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Watson, P.

Wei, H.

Wu, Q.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Wu, T.

Xiao, X.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-cars microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

Xie, R.

Xu, C.

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99, 071112 (2011).
[Crossref]

Yan, B.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Yan, M.

Yang, C.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-cars microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

Yang, Z.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Yu, C.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Yuan, J.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Zhang, H.

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Zhang, W.

X. Li, Y. Wang, W. Zhang, and W. Zhao, “Experimental observation of soliton molecule evolution in yb-doped passively mode-locked fiber lasers,” Laser Phys. Lett. 11, 075103 (2014).
[Crossref]

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Zhao, W.

X. Li, Y. Wang, W. Zhang, and W. Zhao, “Experimental observation of soliton molecule evolution in yb-doped passively mode-locked fiber lasers,” Laser Phys. Lett. 11, 075103 (2014).
[Crossref]

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Zhou, G.

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Zhou, T.

K. Chen, T. Wu, T. Zhou, H. Wei, and Y. Li, “Cascaded Dual-Soliton Pulse Stokes for Broadband Coherent Anti-Stokes Raman Spectroscopy,” IEEE Photonics J. 8, 1–8 (2016).

K. Chen, T. Wu, H. Wei, T. Zhou, and Y. Li, “Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses,” Biomed. Opt. Express 7, 3927–3939 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99, 071112 (2011).
[Crossref]

Biomed. Opt. Express (1)

Chem. Soc. Rev. (1)

C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

IEEE Photon. J. (1)

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-cars microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

IEEE Photonics J. (1)

K. Chen, T. Wu, T. Zhou, H. Wei, and Y. Li, “Cascaded Dual-Soliton Pulse Stokes for Broadband Coherent Anti-Stokes Raman Spectroscopy,” IEEE Photonics J. 8, 1–8 (2016).

J. Light. Technol. (1)

J. Hult, “A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Light. Technol. 25, 3770–3775 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Laser Phys. Lett. (1)

X. Li, Y. Wang, W. Zhang, and W. Zhao, “Experimental observation of soliton molecule evolution in yb-doped passively mode-locked fiber lasers,” Laser Phys. Lett. 11, 075103 (2014).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Li, Y. Wang, W. Zhao, W. Zhang, X. Hu, C. Gao, H. Zhang, Z. Yang, H. Wang, X. Wang, C. Li, and D. Shen, “Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers,” Opt. Commun. 285, 1356–1361 (2012).
[Crossref]

Opt. Eng. (1)

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P.-k. A. Wai, “Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber,” Opt. Eng. 54, 056107 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90, 043813 (2014).
[Crossref]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear fiber optics, 5th ed. (Elsevier/Academic Press, Amsterdam, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Temporal (a) and spectral (b) evolution along evolution distance. Red color for fast axis and green for slow axis.
Fig. 2
Fig. 2 Output evolution at different input polarization angles. (a) Output spectra. The red and green value in each pixel is the intensity in the fast and slow axes, respectively. (b) Output pulses in temporal domain. (c) Wavelength (orange) and delay (blue) difference at different input polarization angles.
Fig. 3
Fig. 3 Change of tuning characteristics at different average input powers. (a) Temporal(blue) and spectral(red) crossing points at different input powers (b) Center wavelength (blue) and relative delay (red) with spectral crossing at different input powers. (c) Center wavelength(blue) and relative delay(red) with input polarization angle is 35 degrees at different input powers.
Fig. 4
Fig. 4 Experiment Setup. M: mirror, HWP: half-wave plate, F: spectral filter, C: coupler, L: lens, GR: SF57 glass rod, DM: dichroic mirror, P: polarizer, OBJ: objective lens, PBS: polarized beam splitter, Spc: spectrometer, Det: detector.
Fig. 5
Fig. 5 Comparison between simulation and experiment result. (a) Spectra from experiment, a 1150 nm long-pass filter is applied. (b) Spectra from simulation, input average power is set to 80 mW with zero dispersion. Artificial blurring is added to match the resolution of spectrometer used in experiment (c) Autocorrelator graph at 42 degrees from experiment (d) Simulated autocorrelator graph from simulation at 42 degrees.
Fig. 6
Fig. 6 Original and processed Raman result of different samples. (a) Dual-soliton detection of fish oil: 1)original spectra signal, 2)signal from each soliton, 3)retrieved background-suppressed Raman spectrum. (b) Cascaded detection of Polystyrene (PS) and polyethylene glycol terephthalate (PET): 1)original spectra, 2) signal from each soliton, 3)combined Raman spectrum. The spectrometer could be replaced by a highspeed detector.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

u z i β u + δ u t k 2 6 i k + 1 k ! β k k u t k = i γ ( 1 + i ω 0 t ) ( | u | 2 + 2 3 | v | 2 + u 0 R ( t ) | u ( t t ) | 2 d t )
v z + i β v δ v t k = 2 6 i k + 1 k ! β k k v t k = i γ ( 1 + i ω 0 t ) ( | v | 2 + 2 3 | u | 2 + v 0 R ( t ) | v ( t t ) | 2 d t )
R ( t ) = f r i = 1 13 A i   ω v , i exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) sin ( ω v , i t ) θ ( t )