Abstract

Bessel beams are advantageous in high aspect-ratio microhole drilling because of their immunity to diffraction. However, conventional methods of generating Bessel beams result in poor adjustability of the nondiffraction length. In this study, we theoretically describe and experimentally demonstrate the generation of Bessel-like beams (BLBs) with an adjustable nondiffraction length by using a phase-only spatial light modulator. In this method, nondiffraction lengths varying from 10 to 35 mm can be achieved by changing the designed phase profile (curvature). High-quality, high aspect ratio (560:1) and length-adjustable microholes can be drilled by spatially shaping a femtosecond laser beam.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining

Sambit Mitra, Margaux Chanal, Raphaël Clady, Alexandros Mouskeftaras, and David Grojo
Appl. Opt. 54(24) 7358-7365 (2015)

Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA

Yanwu Yu, Lan Jiang, Qiang Cao, Bo Xia, Qingsong Wang, and Yongfeng Lu
Opt. Express 23(25) 32728-32735 (2015)

High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley
Opt. Express 18(2) 566-574 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Karra and S. C. Kong, “Experimental Study on Effects of Nozzle Hole Geometry on Achieving Low Diesel Engine Emissions,” J. Eng. Gas. Turbines Power-Trans. ASME 132, 022802 (2010).
  2. M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).
  3. K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
    [Crossref]
  4. A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).
  5. E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
    [Crossref]
  6. K. Egashira and K. Mizutani, “Micro-drilling of monocrystalline silicon using a cutting tool,” Precis. Eng. 26(3), 263–268 (2002).
    [Crossref]
  7. X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining,” Precis. Eng. 33(4), 459–465 (2009).
    [Crossref]
  8. S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
    [Crossref]
  9. P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
    [Crossref] [PubMed]
  10. M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
    [Crossref]
  11. Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
    [Crossref]
  12. B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  13. L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
    [Crossref]
  14. B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
    [Crossref] [PubMed]
  15. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
    [Crossref] [PubMed]
  16. H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
    [Crossref]
  17. J. Kim, Y. Jeong, S. Lee, W. Ha, J. S. Shin, and K. Oh, “Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping,” Opt. Lett. 37(4), 623–625 (2012).
    [Crossref] [PubMed]
  18. S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy,” Sci. Rep. 2(1), 692 (2012).
    [Crossref] [PubMed]
  19. E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
    [Crossref]
  20. E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip micro-structures and their use in the material treatment,” J. Laser Micro Nanoeng. 11(3), 352–356 (2016).
    [Crossref]
  21. A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Y. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
    [Crossref] [PubMed]
  22. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007).
    [Crossref] [PubMed]
  23. E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
    [Crossref] [PubMed]
  24. J. Martin, J. Proust, D. Gérard, J. L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37(7), 1274–1276 (2012).
    [Crossref] [PubMed]
  25. V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel-like beams with z-dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010).
    [Crossref] [PubMed]
  26. A. M. Summers, X. Yu, X. Wang, M. Raoul, J. Nelson, D. Todd, S. Zigo, S. Lei, and C. A. Trallero-Herrero, “Spatial characterization of Bessel-like beams for strong-field physics,” Opt. Express 25(3), 1646–1655 (2017).
    [Crossref] [PubMed]
  27. X. Cheng, Q. Zhang, H. Chen, B. He, Z. Ren, Y. Zhang, and J. Bai, “Demonstration of Bessel-like beam with variable parameters generated using cross-phase modulation,” Opt. Express 25(21), 25257–25266 (2017).
    [Crossref] [PubMed]
  28. T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
    [Crossref] [PubMed]
  29. I. Ouadghiri-Idrissi, R. Giust, L. Froehly, M. Jacquot, L. Furfaro, J. M. Dudley, and F. Courvoisier, “Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator,” Opt. Express 24(11), 11495–11504 (2016).
    [Crossref] [PubMed]
  30. I. A. Litvin, T. Mhlanga, and A. Forbes, “Digital generation of shape-invariant Bessel-like beams,” Opt. Express 23(6), 7312–7319 (2015).
    [Crossref] [PubMed]
  31. G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
    [Crossref]
  32. I. Ouadghiri-Idrissi, J. M. Dudley, and F. Courvoisier, “Controlling nonlinear instabilities in Bessel beams through longitudinal intensity shaping,” Opt. Lett. 42(19), 3785–3788 (2017).
    [Crossref] [PubMed]

2018 (1)

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

2017 (4)

2016 (2)

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip micro-structures and their use in the material treatment,” J. Laser Micro Nanoeng. 11(3), 352–356 (2016).
[Crossref]

I. Ouadghiri-Idrissi, R. Giust, L. Froehly, M. Jacquot, L. Furfaro, J. M. Dudley, and F. Courvoisier, “Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator,” Opt. Express 24(11), 11495–11504 (2016).
[Crossref] [PubMed]

2015 (5)

I. A. Litvin, T. Mhlanga, and A. Forbes, “Digital generation of shape-invariant Bessel-like beams,” Opt. Express 23(6), 7312–7319 (2015).
[Crossref] [PubMed]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
[Crossref] [PubMed]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
[Crossref]

A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).

2014 (1)

2013 (1)

Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
[Crossref]

2012 (3)

2011 (1)

M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
[Crossref]

2010 (5)

P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
[Crossref] [PubMed]

P. K. Karra and S. C. Kong, “Experimental Study on Effects of Nozzle Hole Geometry on Achieving Low Diesel Engine Emissions,” J. Eng. Gas. Turbines Power-Trans. ASME 132, 022802 (2010).

M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel-like beams with z-dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010).
[Crossref] [PubMed]

2009 (3)

T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining,” Precis. Eng. 33(4), 459–465 (2009).
[Crossref]

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

2007 (2)

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007).
[Crossref] [PubMed]

2004 (1)

S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
[Crossref]

2002 (1)

K. Egashira and K. Mizutani, “Micro-drilling of monocrystalline silicon using a cutting tool,” Precis. Eng. 26(3), 263–268 (2002).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1980 (1)

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Ahn, S. H.

S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
[Crossref]

Auguste, T.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Bai, J.

Bartz, P.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Belyi, V.

Bemporad, E.

M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
[Crossref]

Bera, S.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Bhuyan, M. K.

Bijeon, J. L.

Cao, X. D.

X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining,” Precis. Eng. 33(4), 459–465 (2009).
[Crossref]

Charraut, D.

Chen, G.

Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
[Crossref]

Chen, H.

Cheng, X.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Choi, D. K.

S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
[Crossref]

Chu, C. N.

X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining,” Precis. Eng. 33(4), 459–465 (2009).
[Crossref]

S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
[Crossref]

Cizmár, T.

Collins, S. D.

P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
[Crossref] [PubMed]

Courvoisier, F.

Cui, T. H.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Dachraoui, H.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Dholakia, K.

Driver, N.

M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).

Dudley, J. M.

Eberl, C.

M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
[Crossref]

Egashira, K.

K. Egashira and K. Mizutani, “Micro-drilling of monocrystalline silicon using a cutting tool,” Precis. Eng. 26(3), 263–268 (2002).
[Crossref]

Fen, L. S.

A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).

Forbes, A.

Forsman, A. C.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

Froehly, L.

Furfaro, L.

Garliauskas, M.

E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
[Crossref]

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip micro-structures and their use in the material treatment,” J. Laser Micro Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Gedvilas, M.

E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Gérard, D.

Giust, R.

Goya, K.

K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
[Crossref]

Grosjean, T.

Gurbatov, S.

Ha, W.

He, B.

Heinzmann, U.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Helmstedt, A.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Hoppe, M. L.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

Howitt, D. G.

P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
[Crossref] [PubMed]

Ibrahim, I. A.

Itoh, T.

K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
[Crossref]

Jacquot, M.

Jeong, Y.

Jiang, L.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
[Crossref] [PubMed]

Karra, P. K.

P. K. Karra and S. C. Kong, “Experimental Study on Effects of Nozzle Hole Geometry on Achieving Low Diesel Engine Emissions,” J. Eng. Gas. Turbines Power-Trans. ASME 132, 022802 (2010).

Kazak, N.

Khilo, N.

Kim, B. H.

X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining,” Precis. Eng. 33(4), 459–465 (2009).
[Crossref]

Kim, J.

Kong, S. C.

P. K. Karra and S. C. Kong, “Experimental Study on Effects of Nozzle Hole Geometry on Achieving Low Diesel Engine Emissions,” J. Eng. Gas. Turbines Power-Trans. ASME 132, 022802 (2010).

Kuchmizhak, A.

Kulchin, Y.

Lacourt, P. A.

Lee, S.

Lei, S.

Li, B.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Li, L.

M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).

Li, S.

Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
[Crossref]

Li, X.

Litvin, I. A.

Lu, Y.

Lu, Y. F.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Lundgren, E. H.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

Martin, J.

Mativenga, P. T.

M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).

Mazumder, J.

Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
[Crossref]

Mhlanga, T.

Michelswirth, M.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Mizutani, K.

K. Egashira and K. Mizutani, “Micro-drilling of monocrystalline silicon using a cutting tool,” Precis. Eng. 26(3), 263–268 (2002).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Mondal, P. P.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Moreno, K. A.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

Mueller, N.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Nelson, J.

Nepomniaschii, A.

Nikroo, A.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Oh, K.

Okasha, M. M.

M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).

Ouadghiri-Idrissi, I.

Pfeiffer, W.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Pharr, G. M.

M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
[Crossref]

Piquerey, V.

Plain, J.

Proust, J.

Purnapatra, S. B.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Raciukaitis, G.

E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
[Crossref]

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip micro-structures and their use in the material treatment,” J. Laser Micro Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Raoul, M.

Ren, Z.

Ropot, P.

Roy, G.

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Ryu, S. H.

S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
[Crossref]

Saleh, S. S.

Salieres, P.

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Sandoz, P.

Sarhan, A. A.

A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).

Sayuti, M.

A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).

Sebastiani, M.

M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
[Crossref]

Seki, A.

K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
[Crossref]

Shin, J. S.

Smith, R. L.

P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
[Crossref] [PubMed]

Spinney, P. S.

P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
[Crossref] [PubMed]

Stankevicius, E.

E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
[Crossref]

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip micro-structures and their use in the material treatment,” J. Laser Micro Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Suarez, M. A.

Summers, A. M.

Tarasenko, N.

E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
[Crossref]

Todd, D.

Trallero-Herrero, C. A.

Tremblay, R.

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Tunnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Vitrik, O.

vonAlvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wang, A. D.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Wang, X.

Watanabe, K.

K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
[Crossref]

Withford, M. J.

Xia, B.

Yan, X.

Yip, M. W.

A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).

Yu, X.

Zhang, Q.

Zhang, Y.

X. Cheng, Q. Zhang, H. Chen, B. He, Z. Ren, Y. Zhang, and J. Bai, “Demonstration of Bessel-like beam with variable parameters generated using cross-phase modulation,” Opt. Express 25(21), 25257–25266 (2017).
[Crossref] [PubMed]

Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
[Crossref]

Zigo, S.

Ann. Phys. (1)

E. Stankevičius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Račiukaitis, “Structuring of Surfaces with Gold Nanoparticles by Using Bessel‐Like Beams,” Ann. Phys. 529(12), 1700174 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

CIRP Ann-Manuf. Technol. (1)

M. M. Okasha, P. T. Mativenga, N. Driver, and L. Li, “Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application,” CIRP Ann-Manuf. Technol. 59, 199–202 (2010).

Fus. Sci. Technol. (1)

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fus. Sci. Technol. 51(4), 576–580 (2007).
[Crossref]

Int. J. Mech. Aerosp. Ind. Mech. Eng. (1)

A. A. Sarhan, L. S. Fen, M. W. Yip, and M. Sayuti, “Fuzzy modeling for micro EDM parameters Optimization in drilling of biomedical implants Ti-6Al-4V alloy for higher machining performance,” Int. J. Mech. Aerosp. Ind. Mech. Eng. 9, 197–201 (2015).

J. Eng. Gas. Turbines Power-Trans. ASME (1)

P. K. Karra and S. C. Kong, “Experimental Study on Effects of Nozzle Hole Geometry on Achieving Low Diesel Engine Emissions,” J. Eng. Gas. Turbines Power-Trans. ASME 132, 022802 (2010).

J. Laser Micro Nanoeng. (1)

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip micro-structures and their use in the material treatment,” J. Laser Micro Nanoeng. 11(3), 352–356 (2016).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salieres, and U. Heinzmann, “Interplay between absorption, dispersion and refraction in high-order harmonic generation,” J. Phys. At. Mol. Opt. Phys. 42(17), 175402 (2009).
[Crossref]

Light Sci. Appl. (1)

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Mater. Sci. Eng. A (1)

M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method,” Mater. Sci. Eng. A 528(27), 7901–7908 (2011).
[Crossref]

Nanotechnology (1)

P. S. Spinney, D. G. Howitt, R. L. Smith, and S. D. Collins, “Nanopore formation by low-energy focused electron beam machining,” Nanotechnology 21(37), 375301 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Opt. Express (9)

X. Cheng, Q. Zhang, H. Chen, B. He, Z. Ren, Y. Zhang, and J. Bai, “Demonstration of Bessel-like beam with variable parameters generated using cross-phase modulation,” Opt. Express 25(21), 25257–25266 (2017).
[Crossref] [PubMed]

I. A. Litvin, T. Mhlanga, and A. Forbes, “Digital generation of shape-invariant Bessel-like beams,” Opt. Express 23(6), 7312–7319 (2015).
[Crossref] [PubMed]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
[Crossref] [PubMed]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

I. Ouadghiri-Idrissi, R. Giust, L. Froehly, M. Jacquot, L. Furfaro, J. M. Dudley, and F. Courvoisier, “Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator,” Opt. Express 24(11), 11495–11504 (2016).
[Crossref] [PubMed]

A. M. Summers, X. Yu, X. Wang, M. Raoul, J. Nelson, D. Todd, S. Zigo, S. Lei, and C. A. Trallero-Herrero, “Spatial characterization of Bessel-like beams for strong-field physics,” Opt. Express 25(3), 1646–1655 (2017).
[Crossref] [PubMed]

T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel-like beams with z-dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

Y. Zhang, S. Li, G. Chen, and J. Mazumder, “Experimental observation and simulation of keyhole dynamics during laser drilling,” Opt. Laser Technol. 48, 405–414 (2013).
[Crossref]

Opt. Lett. (3)

Precis. Eng. (3)

K. Egashira and K. Mizutani, “Micro-drilling of monocrystalline silicon using a cutting tool,” Precis. Eng. 26(3), 263–268 (2002).
[Crossref]

X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining,” Precis. Eng. 33(4), 459–465 (2009).
[Crossref]

S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precis. Eng. 28(2), 129–134 (2004).
[Crossref]

Sci. Rep. (1)

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Sens. Actuator B-Chem. (1)

K. Goya, T. Itoh, A. Seki, and K. Watanabe, “Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer,” Sens. Actuator B-Chem. 210, 685–691 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Measurement setup. S: shutter, ND: neutral density filter, BS: beam splitter, and BD: black damper. (b) Fabrication setup. MO: micro-objective.
Fig. 2
Fig. 2 Comparison of Bessel beams and BLBs.
Fig. 3
Fig. 3 Phase profiles for Bessel beams (2° cone angle) and BLBs, R: curvature radius. The insets are magnified view of black dotted frame.
Fig. 4
Fig. 4 Phase and cross-section intensity profiles at 5, 10, 15, 20, 25, and 30 cm from the SLM for the three types of beams. (a) Bessel beam (2° cone angle), (b) BLBs: R = + 9 × 105, and R = −3 × 105. The scale bar represents 100 μm.
Fig. 5
Fig. 5 Comparison between the simulation and experimental results for BLBs with different propagation distances.
Fig. 6
Fig. 6 The theoretical simulation and experimental results of the non-diffraction length versus curvature for the case where the curvature is “+” (left) and the curvature is “-” (right).
Fig. 7
Fig. 7 Drilling results for the three types of beams [the longer BLBs: R = + 9 × 105, + 1.5 × 106, and + 5 × 106; the shorter BLBs: R = −1 × 106, −5 × 105, and −3 × 105; and Bessel beam. The length scale bar is 100 μm, the diameter scale bar is 2 μm.].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S( k x , k y , k z )= + U(x,y,z) e i( k x x+ k y y+ k z z) dxdydz.
S( k r ,z=0)= 0 U(r,z=0) J 0 ( k r r)rdr,
U(r,z=0)= 0 S( k r ,z=0) J 0 ( k r r) k r d k r .
U(r=0,z)= 0 k S( k 2 k z 2 ,z=0) e i k z z k z d k z .
I(r,z)=2πk( sin 2 β)/( ω 0 2 )zexp[2( sin 2 β) z 2 /( ω 0 2 )] J 0 2 [k(sinβ)r],
β BLB (r)=arctan(| x 0 r|/ R 2 (r x 0 ) 2 ),

Metrics