Abstract

An efficient soft chemistry method to modify the phase, shape and optical thermometry of NaGdF4:2%Er3+ nano-phosphors through doping Ca2+ ion is reported. With the introduction of Ca2+, the phase changes from the GdF3:2%Er3+ to NaGdF4:2%Er3+ was achieved, and the shapes of NaGdF4:2%Er3+ were modified from irregular particles to pure hexagonal NaGdF4 microtubes. These modifications derive from the charge redistribution on the nucleus surface through internal electron charge transport between Gd3+ in a lattice and co-doped Ca2+ ion. An obvious enhancement of the total fluorescence intensity was observed after doping the Ca2+ ion. Moreover, an interesting phenomenon was observed that the fluorescence intensity of the mixed GdF3:2%Er3+ and NaGdF4:2%Er3+ was not be quenched at the high temperature more than 473 K. A maximum relative sensitivity of 0.00213/K (416 K) was obtained at 20%Ca2+ doping. These results indicate that NaGdF4:Er3+/Ca2+ can be applied in optical temperature sensor.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlling optical temperature behaviors of Er3+ doped Sr2CaWO6 through doping and changing excitation powers

Yemin Wang, Yuanjian Liu, Jianping Shen, Xiangfu Wang, and Xiaohong Yan
Opt. Mater. Express 8(7) 1926-1939 (2018)

Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor

Zhen Huang, Zhongquan Nie, Mubiao Xie, Yuxiao Wang, and Dongyu Li
Opt. Mater. Express 7(7) 2404-2410 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
    [Crossref] [PubMed]
  2. T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
    [Crossref]
  3. R. Dey, A. Pandey, and V. K. Rai, “The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 128(128C), 508–513 (2014).
    [Crossref] [PubMed]
  4. P. Du and J. S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
    [Crossref]
  5. D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
    [Crossref]
  6. D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
    [Crossref]
  7. Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
    [Crossref]
  8. S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
    [Crossref]
  9. D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
    [Crossref]
  10. F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
    [Crossref]
  11. D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
    [Crossref] [PubMed]
  12. C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
    [Crossref]
  13. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
    [Crossref] [PubMed]
  14. N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
    [Crossref]
  15. K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
    [Crossref]
  16. A. Kar, S. Kundu, and A. Patra, “Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding,” ChemPhysChem 16(3), 505–521 (2015).
    [Crossref] [PubMed]
  17. Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
    [Crossref]
  18. T. Pang and J. J. Wang, “Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors,” Mater. Res. Express. 5(1), 014049 (2018).
    [Crossref]
  19. C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
    [Crossref] [PubMed]
  20. W. Xu, H. Qi, L. Zheng, Z. Zhang, and W. Cao, “Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4,” Opt. Lett. 40(23), 5678–5681 (2015).
    [Crossref] [PubMed]
  21. L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nanothermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
    [Crossref]
  22. K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
    [Crossref]
  23. C. Q EY. Bu, L. Meng, and X. Yan, “Tm3+ modified optical temperature behavior of transparent Er3+-doped hexagonal NaGdF4 glass ceramics,” Nanoscale Res. Lett. 12(1), 402 (2017).
    [Crossref] [PubMed]
  24. D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
    [Crossref]
  25. Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
    [Crossref]
  26. G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
    [Crossref] [PubMed]
  27. J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
    [Crossref]
  28. Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
    [Crossref]
  29. A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
    [Crossref]
  30. R. P. S. Chakradhar, B. J. Basu, and R. V. Lakshmi, “Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(2), 783–787 (2011).
    [Crossref] [PubMed]
  31. L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
    [Crossref] [PubMed]
  32. Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
    [Crossref] [PubMed]
  33. N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
    [Crossref]
  34. L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
    [Crossref] [PubMed]
  35. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  36. J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
    [Crossref]
  37. X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Q. Vu, and H. Jin, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref]
  38. X. F. Wang, C. S. Liu, and X. H. Yan, “Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor,” RSC Advances 4(46), 24170–24175 (2014).
    [Crossref]
  39. H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
    [Crossref] [PubMed]
  40. D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
    [Crossref] [PubMed]
  41. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
    [Crossref]
  42. E. A. Gouveia, M. T. Araujo, and A. S. Gouveia-Neto, “Thermal effects on light emission in Yb3+-sensitized rare-earth doped optical glasses,” Braz. J. Phys. 31(1), 89–101 (2001).
    [Crossref]
  43. J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
    [Crossref]

2018 (3)

T. Pang and J. J. Wang, “Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors,” Mater. Res. Express. 5(1), 014049 (2018).
[Crossref]

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

2017 (11)

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nanothermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

C. Q EY. Bu, L. Meng, and X. Yan, “Tm3+ modified optical temperature behavior of transparent Er3+-doped hexagonal NaGdF4 glass ceramics,” Nanoscale Res. Lett. 12(1), 402 (2017).
[Crossref] [PubMed]

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

P. Du and J. S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

2016 (2)

2015 (6)

A. Kar, S. Kundu, and A. Patra, “Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding,” ChemPhysChem 16(3), 505–521 (2015).
[Crossref] [PubMed]

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

W. Xu, H. Qi, L. Zheng, Z. Zhang, and W. Cao, “Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4,” Opt. Lett. 40(23), 5678–5681 (2015).
[Crossref] [PubMed]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

2014 (3)

X. F. Wang, C. S. Liu, and X. H. Yan, “Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor,” RSC Advances 4(46), 24170–24175 (2014).
[Crossref]

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

R. Dey, A. Pandey, and V. K. Rai, “The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 128(128C), 508–513 (2014).
[Crossref] [PubMed]

2013 (3)

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

2012 (2)

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

2011 (3)

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

R. P. S. Chakradhar, B. J. Basu, and R. V. Lakshmi, “Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(2), 783–787 (2011).
[Crossref] [PubMed]

2010 (2)

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

2009 (2)

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
[Crossref]

2008 (1)

Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
[Crossref]

2006 (1)

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

2003 (1)

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

2001 (2)

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

E. A. Gouveia, M. T. Araujo, and A. S. Gouveia-Neto, “Thermal effects on light emission in Yb3+-sensitized rare-earth doped optical glasses,” Braz. J. Phys. 31(1), 89–101 (2001).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Alencar, M. A. R. C.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Araujo, M. T.

E. A. Gouveia, M. T. Araujo, and A. S. Gouveia-Neto, “Thermal effects on light emission in Yb3+-sensitized rare-earth doped optical glasses,” Braz. J. Phys. 31(1), 89–101 (2001).
[Crossref]

Avila, J. F. M.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Basu, B. J.

R. P. S. Chakradhar, B. J. Basu, and R. V. Lakshmi, “Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(2), 783–787 (2011).
[Crossref] [PubMed]

Bednarkiewicz, A.

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nanothermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

Boulon, G.

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

Brandão-Silva, A. C.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Bu, Y.

C. Q EY. Bu, L. Meng, and X. Yan, “Tm3+ modified optical temperature behavior of transparent Er3+-doped hexagonal NaGdF4 glass ceramics,” Nanoscale Res. Lett. 12(1), 402 (2017).
[Crossref] [PubMed]

Cai, P. Q.

Calmano, T.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Cao, C. Y.

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

Cao, W.

Chakradhar, R. P. S.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

R. P. S. Chakradhar, B. J. Basu, and R. V. Lakshmi, “Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(2), 783–787 (2011).
[Crossref] [PubMed]

Chen, B. J.

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Chen, D.

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Chen, D. P.

C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
[Crossref]

Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
[Crossref]

Chen, D. Q.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Chen, K. J.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Chen, X.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Chen, Y.

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Cui, C. E.

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Cui, D.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Dai, J. Y.

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

De, G. J. H.

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

Dey, R.

R. Dey, A. Pandey, and V. K. Rai, “The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 128(128C), 508–513 (2014).
[Crossref] [PubMed]

Dhananjaya, N.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

Ding, M.

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

Dong, H.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Du, P.

P. Du and J. S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

Fang, Y. P.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Feng, G. Y.

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

Feng, W.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Flask, C. A.

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

Gai, S. L.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gao, G.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Gerasymchuk, Y.

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

Gomes, M. A.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Gouveia, E. A.

E. A. Gouveia, M. T. Araujo, and A. S. Gouveia-Neto, “Thermal effects on light emission in Yb3+-sensitized rare-earth doped optical glasses,” Braz. J. Phys. 31(1), 89–101 (2001).
[Crossref]

Gouveia-Neto, A. S.

E. A. Gouveia, M. T. Araujo, and A. S. Gouveia-Neto, “Thermal effects on light emission in Yb3+-sensitized rare-earth doped optical glasses,” Braz. J. Phys. 31(1), 89–101 (2001).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

He, F.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Hreniak, D.

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

Huang, F.

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Huang, P.

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Huang, Z. Z.

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

Huber, G.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Ji, Y.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Ji, Z.

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Ji, Z. G.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Jin, H.

Jin, W.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Jing, X. Y.

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Kar, A.

A. Kar, S. Kundu, and A. Patra, “Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding,” ChemPhysChem 16(3), 505–521 (2015).
[Crossref] [PubMed]

Kong, X.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Kränkel, C.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Kumar, R.

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

Kundu, S.

A. Kar, S. Kundu, and A. Patra, “Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding,” ChemPhysChem 16(3), 505–521 (2015).
[Crossref] [PubMed]

Lakshmi, R. V.

R. P. S. Chakradhar, B. J. Basu, and R. V. Lakshmi, “Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(2), 783–787 (2011).
[Crossref] [PubMed]

Lei, L.

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

Lenczewska, K.

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

Li, C.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Li, C. X.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

Li, F.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Li, N.

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Li, Q.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Li, S.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

Li, S. C.

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

Li, X. Y.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

Li, Y.

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Liem, N. Q.

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

Lin, J.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Lin, Z. W.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Liu, C. H.

C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
[Crossref]

Liu, C. S.

X. F. Wang, C. S. Liu, and X. H. Yan, “Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor,” RSC Advances 4(46), 24170–24175 (2014).
[Crossref]

Liu, H. Q.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Liu, J. J.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Liu, K.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Liu, Q.

X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Q. Vu, and H. Jin, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Liu, S.

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

Liu, X.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Lu, F. Q.

Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
[Crossref]

Lu, H.

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Lu, Y. D.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Ma, J.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Ma, M.

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

Macedo, Z. S.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Marciniak, L.

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nanothermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

Meng, L.

C. Q EY. Bu, L. Meng, and X. Yan, “Tm3+ modified optical temperature behavior of transparent Er3+-doped hexagonal NaGdF4 glass ceramics,” Nanoscale Res. Lett. 12(1), 402 (2017).
[Crossref] [PubMed]

Metz, P. W.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Moglia, F.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Müller, S.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Nagabhushana, B. M.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

Nagabhushana, H.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

Niedbala, R. S.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

Niu, N.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Novais, S. M. V.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Nyk, M.

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

Ohulchanskyy, T. Y.

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

Pan, W.

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Pandey, A.

R. Dey, A. Pandey, and V. K. Rai, “The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 128(128C), 508–513 (2014).
[Crossref] [PubMed]

Pang, T.

T. Pang and J. J. Wang, “Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors,” Mater. Res. Express. 5(1), 014049 (2018).
[Crossref]

Patra, A.

A. Kar, S. Kundu, and A. Patra, “Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding,” ChemPhysChem 16(3), 505–521 (2015).
[Crossref] [PubMed]

Peng, Y. Z.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Prasad, P. N.

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

Prorok, K.

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nanothermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

Qi, H.

Qin, L.

Qin, W. Q.

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

Qiu, J.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Raap, A. K.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

Rai, V. K.

R. Dey, A. Pandey, and V. K. Rai, “The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 128(128C), 508–513 (2014).
[Crossref] [PubMed]

Reichert, F.

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Rodrigues, J. J. J.

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Rudraswamy, B.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

Shivakumara, C.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

Siu, C. K.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Song, R. Q.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Sun, L. D.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Sun, Y.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Tan, S. Y.

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Tang, B.

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Tanke, H. J.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

Tian, B. N.

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Tian, Y.

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Tu, L.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Vail, T.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

van De Rijke, F.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

Vu, N.

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

Vu, T. Q.

Wan, Z.

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Wan, Z. Y.

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

Wang, H.

C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
[Crossref]

Wang, J.

X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Q. Vu, and H. Jin, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref]

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Wang, J. J.

T. Pang and J. J. Wang, “Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors,” Mater. Res. Express. 5(1), 014049 (2018).
[Crossref]

Wang, L.

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Wang, T.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Wang, X. F.

Wang, Y.

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

Wang, Y. Y.

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

Wang, Z.

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

Wei, Y.

Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
[Crossref]

Wu, F.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Wu, K. L.

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

Wu, Y. Q.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Xia, T. L.

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

Xu, A. W.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Xu, J.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

Xu, L.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Xu, M.

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Xu, W.

Xu, X.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Yan, C. H.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Yan, X.

C. Q EY. Bu, L. Meng, and X. Yan, “Tm3+ modified optical temperature behavior of transparent Er3+-doped hexagonal NaGdF4 glass ceramics,” Nanoscale Res. Lett. 12(1), 402 (2017).
[Crossref] [PubMed]

Yan, X. H.

X. F. Wang, C. S. Liu, and X. H. Yan, “Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor,” RSC Advances 4(46), 24170–24175 (2014).
[Crossref]

Yang, A.

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Yang, C.

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

Yang, L.

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Yang, P. P.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

Yang, T.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

You, L. P.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Yu, H.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Yu, J. C.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Yu, J. S.

P. Du and J. S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

Yu, Q. H.

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

Yu, S. F.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Yu, Y.

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Yu, Z.

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

Zeng, Q.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, C.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Zhang, H.

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, H. X.

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

Zhang, J. S.

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

Zhang, R.

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

Zhang, X.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

Zhang, X. R.

C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
[Crossref]

Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
[Crossref]

Zhang, Y.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, Z.

Zhao, C.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhao, D.

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

Zhao, Y. L.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Zheng, L.

Zhong, J. S.

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Zhou, S. H.

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

Zhou, Y.

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

Zhou, Z.

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

Zijlmans, H.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, and B. Tang, “Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery,” ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Acta Mater. (1)

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the upconversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Adv. Funct. Mater. (2)

Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu, “Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes,” Adv. Funct. Mater. 13(12), 955–960 (2003).
[Crossref]

R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater. 19(6), 853–859 (2009).
[Crossref]

Braz. J. Phys. (1)

E. A. Gouveia, M. T. Araujo, and A. S. Gouveia-Neto, “Thermal effects on light emission in Yb3+-sensitized rare-earth doped optical glasses,” Braz. J. Phys. 31(1), 89–101 (2001).
[Crossref]

Chem. Asian J. (1)

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly intensified upconversion luminescence of Ca2+ -doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

D. Chen, L. Lei, A. Yang, Z. Wang, and Y. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.) 48(47), 5898–5900 (2012).
[Crossref] [PubMed]

Chem. Eng. J. (1)

P. Du and J. S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

Chem. Phys. Lett. (1)

K. L. Wu, Z. Z. Huang, Q. H. Yu, Y. Y. Wang, and T. L. Xia, “Hexagonal spherical Ln3+-doped NaGdF4: a facile double solvent hydrothermal synthesis and luminescent properties,” Chem. Phys. Lett. 673, 118–125 (2017).
[Crossref]

Chem. Soc. Rev. (1)

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

ChemPhysChem (1)

A. Kar, S. Kundu, and A. Patra, “Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding,” ChemPhysChem 16(3), 505–521 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (5)

J. S. Zhong, D. Q. Chen, Y. Z. Peng, Y. D. Lu, X. Chen, X. Y. Li, and Z. G. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

A. C. Brandão-Silva, M. A. Gomes, S. M. V. Novais, Z. S. Macedo, J. F. M. Avila, J. J. J. Rodrigues, and M. A. R. C. Alencar, “Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs,” J. Alloys Compd. 731, 478–488 (2018).
[Crossref]

Y. Wei, F. Q. Lu, X. R. Zhang, and D. P. Chen, “Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors,” J. Alloys Compd. 455(1), 376–384 (2008).
[Crossref]

S. Y. Tan, P. P. Yang, N. Niu, S. L. Gai, J. Wang, X. Y. Jing, and J. Lin, “Monodisperse and core–shell structured NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm) microspheres: Synthesis and characterization,” J. Alloys Compd. 490(1), 684–689 (2010).
[Crossref]

D. Q. Chen, Z. Wan, Y. Zhou, Y. Chen, H. Yu, H. Lu, Z. Ji, and P. Huang, “Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property,” J. Alloys Compd. 625(11), 149–157 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

J. Eur. Ceram. Soc. (1)

D. Q. Chen, S. Liu, X. Y. Li, Z. Y. Wan, and S. C. Li, “Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing,” J. Eur. Ceram. Soc. 37(13), 4083–4094 (2017).
[Crossref]

J. Lumin. (1)

J. S. Zhang, W. Q. Qin, D. Zhao, G. J. H. De, J. S. Zhang, Y. Wang, and C. Y. Cao, “Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix,” J. Lumin. 119, 341–345 (2006).
[Crossref]

J. Mater. Chem. (2)

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889 (2012).
[Crossref]

C. H. Liu, H. Wang, X. R. Zhang, and D. P. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence,” J. Mater. Chem. 19(4), 489–496 (2009).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

D. Q. Chen, M. Xu, P. Huang, M. Ma, M. Ding, and L. Lei, “Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(22), 5434–5443 (2017).
[Crossref]

K. Lenczewska, Y. Gerasymchuk, N. Vu, N. Q. Liem, G. Boulon, and D. Hreniak, “The size effect on the energy transfer in Bi3+-Eu3+ co-doped GdVO4 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(12), 3014–3023 (2017).
[Crossref]

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nanothermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

Mater. Res. Express. (1)

T. Pang and J. J. Wang, “Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors,” Mater. Res. Express. 5(1), 014049 (2018).
[Crossref]

Nanoscale (3)

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

G. Gao, C. Zhang, Z. Zhou, X. Zhang, J. Ma, C. Li, W. Jin, and D. Cui, “One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging,” Nanoscale 5(1), 351–362 (2013).
[Crossref] [PubMed]

L. Lei, D. Chen, P. Huang, J. Xu, R. Zhang, and Y. Wang, “Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping,” Nanoscale 5(22), 11298–11305 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

C. Q EY. Bu, L. Meng, and X. Yan, “Tm3+ modified optical temperature behavior of transparent Er3+-doped hexagonal NaGdF4 glass ceramics,” Nanoscale Res. Lett. 12(1), 402 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

F. Moglia, S. Müller, F. Reichert, P. W. Metz, T. Calmano, C. Kränkel, and G. Huber, “Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers,” Opt. Mater. 42, 167–173 (2015).
[Crossref]

Phys. B. (1)

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Hydrothermal synthesis, characterization and Raman studiesof Eu3+ activated Gd2O3 nanorods,” Phys. B. 406(9), 1639–1644 (2011).
[Crossref]

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

RSC Advances (3)

J. Y. Dai, C. Yang, H. Zhang, H. Zhang, G. Y. Feng, and S. H. Zhou, “Morphology control and enhancement of 1.5 mm emission in Ca2+/Ce3+ codoped NaGdF4:Yb3+, Er3+ submicrorods,” RSC Advances 7(76), 48238–48244 (2017).
[Crossref]

X. F. Wang, C. S. Liu, and X. H. Yan, “Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor,” RSC Advances 4(46), 24170–24175 (2014).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

R. Dey, A. Pandey, and V. K. Rai, “The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 128(128C), 508–513 (2014).
[Crossref] [PubMed]

R. P. S. Chakradhar, B. J. Basu, and R. V. Lakshmi, “Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(2), 783–787 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 XRD patterns of NaGdF4:2%Er3+ with different Ca2+ concentration.
Fig. 2
Fig. 2 SEM images of NaGdF4:2%Er3+ doped with (a) 0 mol%Ca2+, (b) 5 mol%Ca2+, (c) 10 mol%Ca2+, (d) 12.5 mol%Ca2+, (e) 15 mol%Ca2+, (f) 20 mol%Ca2+, (g) 25 mol%Ca2+, (h) 30 mol%Ca2+, (i) 35 mol%Ca2+, (j) 40 mol%Ca2+.
Fig. 3
Fig. 3 Possible formation mechanism of NaGdF4:2%Er3+, x%Ca2+(x = 0, 5, 10, 12.5, 15, 20, 25, 30, 35, 40).
Fig. 4
Fig. 4 (a) The spectra and CIE(X,Y) chromaticity coordinates diagram, (b) the peak intensity of NaGdF4: 2%Er3+, x%Ca2+ samples with x = 0, 5, 10, 12.5, 15, 20, 25, 30, 35, 40.
Fig. 5
Fig. 5 Log-log of the UC emission intensity against laser excitation power for NaGdF4: 2%Er3+, x%Ca2+ samples with x = 0, 10, 20, 30.
Fig. 6
Fig. 6 Temperature dependent luminescence spectra of NaGdF4:2%Er3+, x%Ca2+(x = 0, 10, 20, 30).
Fig. 7
Fig. 7 Temperature dependent (a) arrhenius plots of emission intensity ratios of 524 nm/543 nm, (b) sensitivity of NaGdF4:2%Er3+,x%Ca2+(x = 0, 5, 10, 12.5, 15, 20, 25, 30, 35, 40).
Fig. 8
Fig. 8 (a) Temperature dependent arrhenius plots of intensity ratios of 525 nm/543 nm emission bands, (b) sensitivity of NaGdF4:2%Er3+, 20%Ca2+ at different excitation powers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I P n
LnR= a T +b
S= dR dT = a T 2 e bTa T