Abstract

We report on modeling, development, and optical characterization of fused silica photonic crystal fiber with germanium doped microinclusion placed in the middle of the core. The fiber is designed to efficiently couple and guide LP02 mode. It offers high optical density in the center region, large mode separation, low losses, and small dispersion with relatively flat profile for both LP01 and LP02 modes in 1-1.6 µm wavelength range. We demonstrate that by changing geometrical and material parameters of the inclusion partially independent tuning of propagation constants of individual modes is possible, what might be found is a variety of potential applications, e.g., in nonlinear optics. We also show that diffraction-limited propagation of LP02 mode in free space can be exploited in microscopy or lab-on-a-chip systems, where the proposed fiber can be used for light delivery.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optics in the LP02 higher-order mode of a fiber

Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks
Opt. Express 21(15) 17786-17799 (2013)

Higher-order core-guided modes in two-dimensional photonic bandgap fibers

Vincent Pureur and Boris T. Kuhlmey
J. Opt. Soc. Am. B 29(7) 1750-1765 (2012)

Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio
Opt. Express 16(3) 2147-2152 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005).
    [Crossref]
  2. A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
    [Crossref]
  3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
    [Crossref]
  5. S. Ramachandran, S. Ghalmi, M. F. Yan, J. W. Nicholson, J. Fleming, P. Wisk, E. Monberg, and F. V. Dimarcello, “Novel fibers using higher order modes: applications to femtosecond pulses,” in LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp. 205–206.
    [Crossref]
  6. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16(3), 2147–2152 (2008).
    [Crossref] [PubMed]
  7. M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
    [Crossref] [PubMed]
  8. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32(4), 328–330 (2007).
    [Crossref] [PubMed]
  9. C.-X. Shi and T. Okoshi, “Analysis of a fiber-optic LP01 ↔ LP02 mode converter,” Opt. Lett. 17(10), 719–721 (1992).
    [Crossref] [PubMed]
  10. L. Fang and H. Jia, “Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings,” Opt. Express 22(10), 11488–11497 (2014).
    [Crossref] [PubMed]
  11. G. Lin and X. Dong, “Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation,” Appl. Opt. 51(19), 4388–4393 (2012).
    [Crossref] [PubMed]
  12. H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
    [Crossref]
  13. C. P. Tsekrekos and D. Syvridis, “All-fiber broadband mode converter for future wavelength and mode division multiplexing systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
    [Crossref]
  14. C. Smith, J. W. Nicholson, P. Balling, S. Ghalmi, and S. Ramachandran, “Enhanced resolution in nonlinear microscopy using the LP02 mode of an optical fiber,” in CLEO/QELS: 2010 Laser Science to Photonic Applications (2010).
  15. Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express 21(15), 17786–17799 (2013).
    [Crossref] [PubMed]
  16. J. Cheng, J. H. Lee, K. Wang, C. Xu, K. G. Jespersen, M. Garmund, L. Grüner-Nielsen, and D. Jakobsen, “Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber,” Opt. Express 19(9), 8774–8780 (2011).
    [Crossref] [PubMed]
  17. J. Hecht, Understanding Fiber Optics (Prentice Hall, 2005).
  18. S. M. Israelsen, L. S. Rishøj, and K. Rottwitt, “Break up of the azimuthal symmetry of higher order fiber modes,” Opt. Express 22(10), 11861–11868 (2014).
    [Crossref] [PubMed]
  19. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  20. J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
    [Crossref]
  21. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3(12), 2086–2093 (1986).
    [Crossref]
  22. P. Sharma, A. Kumar, and R. K. Varshney, “Excitation of LP01 and LP02 modes in a few-mode optical fiber for sensing applications,” Proc. SPIE 4417, 506–512 (2001).
    [Crossref]

2018 (1)

H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
[Crossref]

2016 (1)

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express 21(15), 17786–17799 (2013).
[Crossref] [PubMed]

2012 (2)

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband mode converter for future wavelength and mode division multiplexing systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

G. Lin and X. Dong, “Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation,” Appl. Opt. 51(19), 4388–4393 (2012).
[Crossref] [PubMed]

2011 (1)

2008 (2)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16(3), 2147–2152 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

2001 (1)

P. Sharma, A. Kumar, and R. K. Varshney, “Excitation of LP01 and LP02 modes in a few-mode optical fiber for sensing applications,” Proc. SPIE 4417, 506–512 (2001).
[Crossref]

2000 (1)

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
[Crossref]

1992 (1)

1986 (1)

1984 (1)

Abramski, K. M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Bérubé, J.-P.

H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
[Crossref]

Birks, T. A.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Buczynski, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

Chen, Y.

Chen, Z.

Cheng, J.

Cherif, R.

Degiorgio, V.

Dong, X.

Fang, L.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Fleming, J. W.

Garmund, M.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Grüner-Nielsen, L.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Israelsen, S. M.

Jakobsen, D.

Jespersen, K. G.

Jia, H.

Jindal, R.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
[Crossref]

Kasztelanic, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Klimczak, M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Kumar, A.

P. Sharma, A. Kumar, and R. K. Varshney, “Excitation of LP01 and LP02 modes in a few-mode optical fiber for sensing applications,” Proc. SPIE 4417, 506–512 (2001).
[Crossref]

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
[Crossref]

Lai, K.

Lee, J. H.

Leon-Saval, S. G.

Lin, G.

Mansuripur, M.

Martynkien, T.

Mellah, H.

H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
[Crossref]

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Okoshi, T.

Pniewski, J.

Pysz, D.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Rishøj, L. S.

Rottwitt, K.

Sharma, P.

P. Sharma, A. Kumar, and R. K. Varshney, “Excitation of LP01 and LP02 modes in a few-mode optical fiber for sensing applications,” Proc. SPIE 4417, 506–512 (2001).
[Crossref]

Sharma, S. K.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
[Crossref]

Shi, C.-X.

Sobon, G.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Stefaniuk, T.

Stepien, R.

Stepniewski, G.

Syvridis, D.

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband mode converter for future wavelength and mode division multiplexing systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

Tartara, L.

Tsekrekos, C. P.

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband mode converter for future wavelength and mode division multiplexing systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Vallée, R.

H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
[Crossref]

Varshney, R. K.

P. Sharma, A. Kumar, and R. K. Varshney, “Excitation of LP01 and LP02 modes in a few-mode optical fiber for sensing applications,” Proc. SPIE 4417, 506–512 (2001).
[Crossref]

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
[Crossref]

Wadsworth, W. J.

Wang, K.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Witkowska, A.

Xu, C.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zghal, M.

Zhang, X.

H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
[Crossref]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband mode converter for future wavelength and mode division multiplexing systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Opt. Commun. (1)

H. Mellah, J.-P. Bérubé, R. Vallée, and X. Zhang, “Fabrication of a LP01 to LP02 mode converter embedded in bulk glass using femtosecond direct inscription,” Opt. Commun. 410, 475–478 (2018).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01–LP02 mode interference,” Opt. Fiber Technol. 6(1), 83–90 (2000).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

P. Sharma, A. Kumar, and R. K. Varshney, “Excitation of LP01 and LP02 modes in a few-mode optical fiber for sensing applications,” Proc. SPIE 4417, 506–512 (2001).
[Crossref]

Sci. Rep. (1)

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (3)

S. Ramachandran, S. Ghalmi, M. F. Yan, J. W. Nicholson, J. Fleming, P. Wisk, E. Monberg, and F. V. Dimarcello, “Novel fibers using higher order modes: applications to femtosecond pulses,” in LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp. 205–206.
[Crossref]

C. Smith, J. W. Nicholson, P. Balling, S. Ghalmi, and S. Ramachandran, “Enhanced resolution in nonlinear microscopy using the LP02 mode of an optical fiber,” in CLEO/QELS: 2010 Laser Science to Photonic Applications (2010).

J. Hecht, Understanding Fiber Optics (Prentice Hall, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematics of the considered fiber geometries with air holes claddings: (a) pure fused silica (b) Ge doped fused silica (c) fused silica with Ge doped inclusion in the center.
Fig. 2
Fig. 2 (a) Modal index of four lowest modes calculated for PCF with (solid lines) and without (dashed lines) embedded microinlusion in the core. (b) Difference in modal index between various designs of the fiber. The values in the subscript indicate the amount of germanium in fiber/inclusion.
Fig. 3
Fig. 3 Numerically calculated group delay of the fiber with embedded inclusion (solid lines) and without it (dashed lines).
Fig. 4
Fig. 4 Intensity field distributions and polarization states calculated for the fundamental LP01 (a,c) and LP02 mode (b,d) of the fiber with inclusion (c,d) and without (a,b) calculated for 1.55 µm wavelength. The map in (b) has a different scale range.
Fig. 5
Fig. 5 Simulated angular distribution of light emerging from the output of the fabricated fiber for (a) LP01 and (b) LP02 modes (λ = 1.55 µm). White line corresponds to the drop in intensity by a factor of e2.
Fig. 6
Fig. 6 (a) Modal index as a function of Ge concertation calculated numerically for uniformly doped fiber (dotted lines) and fiber with doped microinclusion of 3 µm diameter (solid lines). (b) The influence of germanium concertation on loss and mode effective area (inset). Calculations are done for 1.55 µm wavelength.
Fig. 7
Fig. 7 Dispersion of the (a) fundamental and (b) LP02 mode calculated for pure fused silica PCF with different concentrations of the germanium in the microinclusion.
Fig. 8
Fig. 8 (a) Modal index and (b) effective mode area calculated numerically for LP01 and LP02 modes. The 22 mol% germanium doped microinclusion is assumed.
Fig. 9
Fig. 9 Simulated power coupling efficiencies for objectives with different numerical apertures.
Fig. 10
Fig. 10 (a) SEM image of the fabricated structure. Experimentally recorded near-field images of fundamental (b) and LP02 HOM mode respectively. The insets show corresponding, numerically calculated intensity distributions.
Fig. 11
Fig. 11 (a) Simulated far field projection profiles of modes at the distance of 9 mm away from the fiber. The insets are images of LP01 and LP02 recorded on the camera. (b) Simulated (solid lines) and measured (dashed lines) dispersion profiles of the fabricated fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )=1+ i=1 3 [ S B i +X( G B i S B i ) ] λ 2 λ 2 [S C i +X(G C i S C i )] 2
overlap=| Re[ ( E 1 × H 2 * d S )( E 2 × H 1 * d S ) E 1 × H 1 * d S ] 1 ( E 2 × H 2 * d S ) |

Metrics