Abstract

There is currently no widely adopted standard for the optical characterization of fluorescence microscopes. We used laser written fluorescence to generate two- and three-dimensional patterns to deliver a quick and quantitative measure of imaging performance. We report on the use of two laser written patterns to measure the lateral resolution, illumination uniformity, lens distortion and color plane alignment using confocal and structured illumination fluorescence microscopes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of microscopic laser beams by 2-D scanning of fluorescence emission

Alan H. Stolpen, Carl S. Brown, and David E. Golan
Appl. Opt. 27(21) 4414-4422 (1988)

Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS)

Marcel Leutenegger, Christian Ringemann, Theo Lasser, Stefan W. Hell, and Christian Eggeling
Opt. Express 20(5) 5243-5263 (2012)

Characterizing the 3-D field distortions in low numerical aperture fluorescence zooming microscope

Praveen Pankajakshan, Zvi Kam, Alain Dieterlen, and Jean-Christophe Olivo-Marin
Opt. Express 20(9) 9876-9889 (2012)

References

  • View by:
  • |
  • |
  • |

  1. “Editorial, “Keeping up standards,” Nat. Photonics12(3), 117 (2018).
  2. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
    [Crossref]
  3. R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6(12), 1929–1941 (2011).
    [Crossref] [PubMed]
  4. M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
    [Crossref] [PubMed]
  5. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
    [Crossref]
  6. J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
    [Crossref] [PubMed]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  8. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
    [Crossref]
  9. K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
    [Crossref]
  10. H. Jiu, H. Tang, J. Zhou, J. Xu, Q. Zhang, H. Xing, W. Huang, and A. Xia, “Sm(DBM)3Phen-doped poly(methyl methacrylate) for three-dimensional multilayered optical memory,” Opt. Lett. 30(7), 774–776 (2005).
    [Crossref] [PubMed]
  11. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
    [Crossref]
  12. A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
    [Crossref] [PubMed]
  13. P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
    [Crossref] [PubMed]
  14. R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19(24), 24122–24128 (2011).
    [Crossref] [PubMed]
  15. M. J. Booth, M. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
    [Crossref]
  16. A. Yacoot and M. J. Downs, “The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer,” Meas. Sci. Technol. 11(8), 1126–1130 (2000).
    [Crossref]
  17. P. L. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt. 20(19), 3382–3384 (1981).
    [Crossref] [PubMed]
  18. K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12(4), 195–198 (1990).
    [Crossref]
  19. M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
    [Crossref] [PubMed]
  20. D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
    [Crossref] [PubMed]
  21. K. O’Holleran and M. Shaw, “Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy,” Biomed. Opt. Express 5(8), 2580–2590 (2014).
    [Crossref] [PubMed]
  22. M. Shaw, L. Zajiczek, and K. O’Holleran, “High speed structured illumination microscopy in optically thick samples,” Methods 88, 11–19 (2015).
    [Crossref] [PubMed]
  23. D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
    [Crossref] [PubMed]

2016 (2)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

2015 (2)

M. Shaw, L. Zajiczek, and K. O’Holleran, “High speed structured illumination microscopy in optically thick samples,” Methods 88, 11–19 (2015).
[Crossref] [PubMed]

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

2014 (3)

2012 (1)

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

2011 (3)

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6(12), 1929–1941 (2011).
[Crossref] [PubMed]

R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19(24), 24122–24128 (2011).
[Crossref] [PubMed]

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

2010 (1)

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

2009 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2005 (1)

2000 (2)

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

A. Yacoot and M. J. Downs, “The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer,” Meas. Sci. Technol. 11(8), 1126–1130 (2000).
[Crossref]

1999 (1)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

1998 (1)

M. J. Booth, M. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[Crossref]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

1990 (1)

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12(4), 195–198 (1990).
[Crossref]

1981 (1)

Alexeev, I.

Alshehri, A. M.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Andrzejewski, L.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Baddeley, D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Baum, M.

Bellec, M.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Bhardwaj, R.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Birch, K. P.

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12(4), 195–198 (1990).
[Crossref]

Booth, M. J.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
[Crossref] [PubMed]

R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19(24), 24122–24128 (2011).
[Crossref] [PubMed]

M. J. Booth, M. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[Crossref]

Bourhis, K.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Bousquet, B.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Brown, C. M.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6(12), 1929–1941 (2011).
[Crossref] [PubMed]

Bub, G.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

Burton, R. A. B.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

Butzlaff, M.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Canioni, L.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Cannell, M. B.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Cardinal, T.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Cheyne, J. E.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Choi, J.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

Cole, R. W.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6(12), 1929–1941 (2011).
[Crossref] [PubMed]

Corbett, A. D.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

Cremer, C.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Crossman, D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Dammeyer, T.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Downs, M. J.

A. Yacoot and M. J. Downs, “The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer,” Meas. Sci. Technol. 11(8), 1126–1130 (2000).
[Crossref]

Forthmann, C.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gietl, A.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Heydemann, P. L.

Holzmeister, P.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Huang, W.

Jayasinghe, I. D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Jesacher, A.

Jinadasa, T.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6(12), 1929–1941 (2011).
[Crossref] [PubMed]

Jiu, H.

Juodkazis, S.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Kallepalli, D. L. N.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Kaneko, R.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Marquez, D. T.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Matsuo, S.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Misawa, H.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Miwa, M.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Montgomery, J. M.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Neil, M. A.

M. J. Booth, M. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[Crossref]

O’Holleran, K.

Ponimaskin, E.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Richardson, M.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Rossberger, S.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Royon, A.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Salter, P. S.

Scaiano, J. C.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Schmidt, M.

Schmied, J. J.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Shaw, M.

Simmonds, R. D.

Soeller, C.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Steinhauer, C.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Sun, H.-B.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Tang, H.

Tinnefeld, P.

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Treguer, M.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009).
[Crossref] [PubMed]

Tuohy, S.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

Videau, J.-J.

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

Waller, L.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Watanabe, M.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Weigel, A.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Wilson, T.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

M. J. Booth, M. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[Crossref]

Xia, A.

Xing, H.

Xu, J.

Yacoot, A.

A. Yacoot and M. J. Downs, “The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer,” Meas. Sci. Technol. 11(8), 1126–1130 (2000).
[Crossref]

Yamasaki, K.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Zajiczek, L.

M. Shaw, L. Zajiczek, and K. O’Holleran, “High speed structured illumination microscopy in optically thick samples,” Methods 88, 11–19 (2015).
[Crossref] [PubMed]

Zeug, A.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Zhang, Q.

Zhou, J.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Biomed. Opt. Express (1)

Front. Physiol. (1)

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

M. J. Booth, M. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[Crossref]

J. Phys. Chem. C (1)

M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010).
[Crossref]

Meas. Sci. Technol. (1)

A. Yacoot and M. J. Downs, “The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer,” Meas. Sci. Technol. 11(8), 1126–1130 (2000).
[Crossref]

Methods (1)

M. Shaw, L. Zajiczek, and K. O’Holleran, “High speed structured illumination microscopy in optically thick samples,” Methods 88, 11–19 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, and P. Tinnefeld, “Fluorescence and super-resolution standards based on DNA origami,” Nat. Methods 9(12), 1133–1134 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Nat. Protoc. (1)

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6(12), 1929–1941 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

PLoS One (2)

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues,” PLoS One 6(5), e20645 (2011).
[Crossref] [PubMed]

Precis. Eng. (1)

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12(4), 195–198 (1990).
[Crossref]

Sci. Rep. (1)

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Other (1)

“Editorial, “Keeping up standards,” Nat. Photonics12(3), 117 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Fabrication of the features within the polymer substrate using a pulsed IR laser. (b) The fluorescent grid target showing with the microstructure from the laser writing process, and magnified in the inset. (c) SIM images of individual fabrication features on a 10 μm pitch. (d) Excitation and emission fluorescence spectra for the laser fabricated regions. Wavelength is in nm. The fabrication powers used to produce the spectra are (according to line colour) orange = 8.0 nJ, dark blue = 6.8 nJ, yellow = 5.7 nJ, purple = 4.7 nJ, green = 3.8 nJ, light blue = background fluorescence.
Fig. 2
Fig. 2 XY section through the confocal data stack of the 8 × 8 × 3 array. The dashed line indicates the location of the XZ section shown below. Z increases with distance into the sample. Scale bars: 10 μm.
Fig. 3
Fig. 3 SIM images of individual features fabricated using a range of pulse energies and repetitions. (a)-(c): five pulses, with energies of: 8 nJ (a), 4.7 nJ (b) and 3.8 nJ (c). (d)-(f) single pulse, with energies of: 5.7 nJ (d), 4.7 nJ (e), 3.8 nJ (f). Image brightness has been adjusted for clarity.
Fig. 4
Fig. 4 Relationship between shell diameter, shell thickness, and fabrication parameters for the SIM images shown in Fig. 3. The plots indicate a linear relationship between shell diameter and pulse energy, whilst the apparent shell thickness remains independent of pulse energy.
Fig. 5
Fig. 5 Line transects across SIM images of the fluorescent shells shown in Fig. 3. The line profiles correspond to features fabricated with the following parameters: 5 × 8 nJ (green) 5 × 4.7 nJ (blue) 5 × 3.8 nJ (yellow), 1 × 5.7 nJ (grey), 1 × 4.7 nJ (orange), 1 × 3.8 nJ (blue). The dashed blue line shown the profile of a 100 nm fluorescent bead captured on the same microscope.
Fig. 6
Fig. 6 Images of fluorescent features taken on a Zeiss Airyscan confocal microscope operating in standard confocal mode. (a)-(d): five pulses, with energies of: 7.4 nJ (a), 6 nJ (b) 5.4 nJ (c) and 4.8 nJ (e)-(f) single pulse, with energies of: 7.4 nJ (e), 4.2 nJ (f). Image brightness has been adjusted for clarity.
Fig. 7
Fig. 7 Line transects through fluorescent shells shown in Fig. 6. The dashed blue line is an average line profile through images of a 100 nm bead taken on the same microscope. The black dashed line indicates the Rayleigh limit which determines the condition for the separation of the two sides of the fluorescent shell to be distinguishable.
Fig. 8
Fig. 8 (a) Raw image of the fluorescent grid using a 40X objective lens taken on a Zeiss Axioplan 2. (b) The Fourier transform of (a) with the zero order blocked to better visualise location of higher orders.(c) Inverse Fourier transform of region passing through red spatial filter in (b). (d) The wrapped phase angle of the signal passing through the green spatial filer in (b). Scale bar: 100 μm.
Fig. 9
Fig. 9 Demonstrating the accuracy of the distortion correction algorithm. (a): An ideal grid was warped using the MATLAB imwarp function before being used as input into the distortion correction algorithm. (b) Details from the overlap of the ideal grid (white) on the distortion corrected grid (red). Each tile corresponds to the numbered regions highlighted in (a). (c) Pixel shift map showing the size and direction of the unwarping within each region to recover the original grid pattern. (d) Details of the pixel shift map, with tiles corresponding to the numbered regions in (c).
Fig. 10
Fig. 10 Multi-channel images of a single layer of the 8 × 8 × 3 array, with a 2 × 2 detail shown inset. Excitation wavelengths (a)-(c) are: 405 nm, 488 nm and 561 nm, with detection bandwidths 430-470 nm, 500-540 nm and 570-620 nm respectively. (d) An image fusing the different colour planes into a single image showing the sub-pixel colour alignment. Images were acquired on an Olympus FV3000.

Tables (1)

Tables Icon

Table 1 Mean and standard deviation values for feature separation (in μm)