Abstract

We present a miniature fiber-optic ultrasound transmitter for generating high-intensity focused ultrasound (HIFU) based on photoacoustic transduction. The HIFU device consists of a fiber and a photoacoustic lens. We develop a simple fabrication procedure for making the photoacoustic lens, which is coated with candle soot nanoparticles-polydimethylsiloxane composites. The fiber is used to deliver pulsed laser for photoacoustic excitation, which facilitates the use of the HIFU device by eliminating the need of free-space optical alignment. The HIFU device (6.5 mm in diameter) produces focused acoustic pressures up to >30 MPa in peak positive with a tight −6-dB focal volume of ~100 μm and ~500 μm in the lateral and axial directions, respectively. Acoustic cavitation induced by the HIFU device is demonstrated. The miniature HIFU device facilitates handheld operation. It holds promise for clinical applications in intraoperative high-precision HIFU therapy. It can even be used for intracavitary therapy with further miniaturization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor

Xue Bai, Yumeng Qi, Yizhi Liang, Jun Ma, Long Jin, and Bai-ou Guan
Biomed. Opt. Express 10(5) 2504-2512 (2019)

In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation

Khalid Daoudi, Martijn Hoogenboom, Martijn den Brok, Dylan Eikelenboom, Gosse J. Adema, Jürgen J. Fütterer, and Chris L. de Korte
Biomed. Opt. Express 8(4) 2235-2244 (2017)

High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite

Nan Wu, Ye Tian, Xiaotian Zou, Vinicius Silva, Armand Chery, and Xingwei Wang
J. Opt. Soc. Am. B 29(8) 2016-2020 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
    [Crossref] [PubMed]
  2. S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
    [Crossref] [PubMed]
  3. S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
    [Crossref] [PubMed]
  4. D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol. 29(6), 887–893 (2003).
    [Crossref] [PubMed]
  5. H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
    [Crossref] [PubMed]
  6. T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
    [Crossref]
  7. Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
    [Crossref]
  8. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
    [Crossref] [PubMed]
  9. S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
    [Crossref]
  10. H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
    [Crossref]
  11. H. W. Baac, T. Lee, and L. J. Guo, “Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms,” Biomed. Opt. Express 4(8), 1442–1450 (2013).
    [Crossref] [PubMed]
  12. H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
    [Crossref] [PubMed]
  13. S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
    [Crossref]
  14. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [Crossref] [PubMed]
  15. L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
    [Crossref]
  16. T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
    [Crossref]
  17. B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
    [Crossref]
  18. W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
    [Crossref]
  19. H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
    [Crossref] [PubMed]
  20. T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
    [Crossref]
  21. S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
    [Crossref] [PubMed]
  22. S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
    [Crossref]
  23. T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
    [Crossref]
  24. E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
    [Crossref] [PubMed]
  25. S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
    [Crossref]
  26. T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
    [Crossref] [PubMed]
  27. T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Optical Mater. 5(2), 1600421 (2017).
    [Crossref]
  28. G. Li, Z. Guo, and S.-L. Chen, “Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging,” Opt. Express 25(21), 25023–25035 (2017).
    [Crossref] [PubMed]
  29. S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
    [Crossref]
  30. J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
    [Crossref] [PubMed]
  31. Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
    [Crossref] [PubMed]
  32. V. R. Amin, “Ultrasonic attenuation estimation for tissue characterization,” Master Thesis (1989).
  33. J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
    [Crossref] [PubMed]
  34. J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
    [Crossref] [PubMed]
  35. T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
    [Crossref]

2018 (1)

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

2017 (3)

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Optical Mater. 5(2), 1600421 (2017).
[Crossref]

G. Li, Z. Guo, and S.-L. Chen, “Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging,” Opt. Express 25(21), 25023–25035 (2017).
[Crossref] [PubMed]

2016 (4)

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
[Crossref]

S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
[Crossref]

2015 (6)

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
[Crossref] [PubMed]

2014 (5)

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[Crossref] [PubMed]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

2013 (4)

H. W. Baac, T. Lee, and L. J. Guo, “Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms,” Biomed. Opt. Express 4(8), 1442–1450 (2013).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

2012 (3)

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

2011 (1)

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

2010 (1)

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

2007 (1)

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

2006 (2)

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[Crossref] [PubMed]

2005 (1)

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

2003 (1)

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol. 29(6), 887–893 (2003).
[Crossref] [PubMed]

2001 (1)

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Alles, E. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

Anastasio, M. A.

Angstadt, M.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Arias Moreno, A. J.

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

Ashkenazi, S.

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Ashworth, M.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Baac, H. W.

T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

H. W. Baac, T. Lee, and L. J. Guo, “Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms,” Biomed. Opt. Express 4(8), 1442–1450 (2013).
[Crossref] [PubMed]

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Beard, P. C.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

Belsito, L.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Bertazzo, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Biagi, E.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Blackburn, B. J.

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Buma, T.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Bur, M.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Cain, C. A.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[Crossref] [PubMed]

Chang, W.-Y.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

Chang, Y.-C.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Chen, S.-L.

G. Li, Z. Guo, and S.-L. Chen, “Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging,” Opt. Express 25(21), 25023–25035 (2017).
[Crossref] [PubMed]

S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Chen, Y.-C.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Chester, A. H.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Colchester, R. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Cranston, D. W.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

David, A. L.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Deán-Ben, X. L.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Demirci, H.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Desjardins, A. E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

Dromi, S.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Fehm, T. F.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Ferri, M.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Fowlkes, J. B.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[Crossref] [PubMed]

Frampton, J.

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

Frenkel, V.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Friend, P. J.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Gleeson, F. V.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Grüll, H.

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

Guo, L. J.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Optical Mater. 5(2), 1600421 (2017).
[Crossref]

T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

H. W. Baac, T. Lee, and L. J. Guo, “Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms,” Biomed. Opt. Express 4(8), 1442–1450 (2013).
[Crossref] [PubMed]

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Guo, Z.

Hall, T.

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Hou, Y.

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Hsieh, B.-Y.

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
[Crossref] [PubMed]

Huang, C.

Huang, W.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

Hung, S.-Y.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
[Crossref] [PubMed]

Illing, R. O.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Jang, E. Y.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Jay Guo, L.

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

Jiang, X.

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

Jose, J.

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Kang, S.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Kennedy, J. E.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Kim, J.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

Kim, J. S.

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Kim, Y. H.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Latif, N.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Lee, K.-T.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Lee, T.

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Optical Mater. 5(2), 1600421 (2017).
[Crossref]

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

H. W. Baac, T. Lee, and L. J. Guo, “Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms,” Biomed. Opt. Express 4(8), 1442–1450 (2013).
[Crossref] [PubMed]

Li, G.

Li, K. C. P.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Li, P.-C.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
[Crossref] [PubMed]

Li, Q.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Li, S.

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

Libutti, S. K.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Ling, T.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Luk, A.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Luo, W.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Mancarella, F.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Maneas, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Manohar, S.

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Maslov, K.

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Middleton, M. R.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Mihnev, M. T.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Miller, D. L.

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol. 29(6), 887–893 (2003).
[Crossref] [PubMed]

Noimark, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

Norris, T. B.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

O’Donnell, M.

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Ok, J. G.

T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Ourselin, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Papakonstantinou, I.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Park, H. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Park, M.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Parkin, I. P.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Parsons, J. E.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[Crossref] [PubMed]

Phillips, R. R.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Poduval, R. K.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Poff, J.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Protheroe, A. S.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Razansky, D.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Roncaglia, A.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Slump, C. H.

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Song, H.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Song, J.

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol. 29(6), 887–893 (2003).
[Crossref] [PubMed]

Spisar, M.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Steenbergen, W.

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Takayama, S.

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

ter Haar, G. R.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Ter Hoeve, N. D.

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

Tian, Y.

Traughber, B.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Tsolaki, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

van Diest, P. J.

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

van Leeuwen, T. G.

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

van Rietbergen, B.

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

Vannacci, E.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Veronese, G. P.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

Wang, L. V.

Wang, X.

Willemink, R. G. H.

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Won Baac, H.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Wood, B. J.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Wu, F.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Wu, N.

Wu, W.-S.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
[Crossref] [PubMed]

Xia, J.

Xie, J.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

Xu, Z.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Yeo, S. Y.

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

Yoh, J. J.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Yoon, E.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Yoon, Y. S.

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

Youn, H. S.

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

Zhang, C.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Zhang, E.

Zhang, E. Z.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Zhang, X.

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

Zhao, T.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Zhou, Y.-F.

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

Zhu, J.

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

Zou, X.

Adv. Funct. Mater. (2)

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube–PDMS composite coatings on optical fibers for all-optical ultrasound imaging,” Adv. Funct. Mater. 26(46), 8390–8396 (2016).
[Crossref]

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Adv. Optical Mater. (1)

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Optical Mater. 5(2), 1600421 (2017).
[Crossref]

Appl. Phys. Lett. (9)

T. Lee, J. G. Ok, L. J. Guo, and H. W. Baac, “Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water,” Appl. Phys. Lett. 108(10), 104102 (2016).
[Crossref]

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[Crossref]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

S. H. Lee, M. Park, J. J. Yoh, H. Song, E. Y. Jang, Y. H. Kim, S. Kang, and Y. S. Yoon, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 101(24), 241909 (2012).
[Crossref]

H. W. Baac, T. Lee, J. G. Ok, T. Hall, and L. Jay Guo, “Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water,” Appl. Phys. Lett. 103(23), 234103 (2013).
[Crossref]

B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett. 106(2), 021902 (2015).
[Crossref]

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015).
[Crossref]

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Appl. Sci. (1)

S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
[Crossref]

Biomed. Opt. Express (2)

Br. J. Cancer (1)

R. O. Illing, J. E. Kennedy, F. Wu, G. R. ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93(8), 890–895 (2005).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13(9), 2722–2727 (2007).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 086004 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophotonics 6(11-12), 905–910 (2013).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-optomechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
[Crossref]

J. Ther. Ultrasound (1)

S. Y. Yeo, A. J. Arias Moreno, B. van Rietbergen, N. D. Ter Hoeve, P. J. van Diest, and H. Grüll, “Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling,” J. Ther. Ultrasound 3(1), 13 (2015).
[Crossref] [PubMed]

Med. Phys. (1)

J. Jose, R. G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Nanoscale (1)

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Appl. (2)

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse,” Phys. Rev. Appl. 2(2), 024007 (2014).
[Crossref]

T. Lee, H. W. Baac, J. G. Ok, H. S. Youn, and L. J. Guo, “Nozzle-free liquid microjetting via homogeneous bubble nucleation,” Phys. Rev. Appl. 3(4), 044007 (2015).
[Crossref]

Sci. Rep. (1)

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Small (1)

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol. 29(6), 887–893 (2003).
[Crossref] [PubMed]

World J. Clin. Oncol. (1)

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

Other (1)

V. R. Amin, “Ultrasonic attenuation estimation for tissue characterization,” Master Thesis (1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The lens placed above the candle in the process of flame synthesis. (b) Schematic of dip-coating process. (c) Schematic of removing the surplus PDMS. (d) Picture of the fabricated CSNPs-PDMS photoacoustic lens. The light region at the bottom left part of the lens is simply due to light reflection when taking the picture.
Fig. 2
Fig. 2 (a) The first sample coated with PDMS only; the PDMS thickness measurement by the confocal microscope. (b) The second sample coated with CSNPs on half space of the lens and then coated with PDMS; the PDMS thickness measurement by the confocal microscope. (c) SEM picture of the cross section of the CSNPs-PDMS composite on the flat glass. (d) SEM picture of the morphology and structure of the CSNPs.
Fig. 3
Fig. 3 (a) Schematic of the HIFU device. (b) Picture of the fabricated HIFU device. The position of the tip of the fiber is indicated. The distance between the fiber tip and the photoacoustic lens is ~30 mm.
Fig. 4
Fig. 4 Experimental setup for characterization of the HIFU device. Inset: illustration of the alignment of the HIFU device, the FOH, and the focused transducer for cavitation demonstration.; BS, beam splitter; FC, fiber coupler; MC, motor controller; MMF, multi-mode fiber; ND, neutral density; OSC, oscilloscope; PC, personal computer; PD, photodetector; PM, power meter; PR, pulser/receiver; SMF, single-mode fiber; TD, transducer.
Fig. 5
Fig. 5 (a) Measured pressure waveforms by FOH at the focal point (z = 4.9 mm) and the out-of-focus point (z = 4.6 mm). (b) Normalized frequency spectra of (a). (c) Peak positive and peak negative pressure values versus laser energy at the focal point (z = 4.9 mm). (d) Spatial profile in the focal plane (z = 4.9 mm). (e) Axial profile along the z direction. Z Position is relative to the focus (z = 4.9 mm).
Fig. 6
Fig. 6 (a) Representative time-domain pressure waveforms measured by FOH. (b) Representative time-domain pressure waveforms measured by the transducer at laser energy levels of 0.53 mJ/pulse (without bubbles) and 3.7 mJ/pulse (with bubbles). (c) Statistical study of bubble collapse lifetimes.
Fig. 7
Fig. 7 Potential design of a photoacoustic image-guided HIFU probe.

Tables (1)

Tables Icon

Table 1 Comparison of LGUS Transmitters

Metrics