Abstract

We demonstrate a method based on an ICL with tunable wavelength covering ethanol absorption peak, water absorption peak and a reference point around 3.345um to make a stand-off detection of ethanol vapor in the space. The detection model is established using the ratios of reference signal and detection signal at three target wavelengths, which help to eliminate the influence of laser power and the cross interference from water vapor in the space. The intrinsic error caused by detectors and optical elements have been corrected, and availability of this approach has been proved both in theory and in experiment.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Research on remote sensing of broadband absorbers by using near-infrared diode lasers

Hui Geng, Jian-Guo Liu, Yabai He, Yu-Jun Zhang, Zhen-Yu Xu, Jun Ruan, Lu Yao, and Rui-Feng Kan
Appl. Opt. 53(28) 6399-6408 (2014)

An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating

Maria Konstantaki, Argyro Klini, Demetrios Anglos, and Stavros Pissadakis
Opt. Express 20(8) 8472-8484 (2012)

Opals infiltrated with a stimuli-responsive hydrogel for ethanol vapor sensing

Riccardo Pernice, Gabriele Adamo, Salvatore Stivala, Antonino Parisi, Alessandro C. Busacca, Dario Spigolon, Maria Antonietta Sabatino, Leonardo D’Acquisto, and Clelia Dispenza
Opt. Mater. Express 3(11) 1820-1833 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, and F. Comeau, “Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry,” Biomed. Opt. Express 5(7), 2333–2340 (2014).
    [Crossref] [PubMed]
  2. A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
    [Crossref]
  3. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39(24), 4425–4430 (2000).
    [Crossref] [PubMed]
  4. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
    [Crossref]
  5. S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote Detection of Alcohol Concentration in Vehicle Based on TDLAS,” in Symposium on Photonics & Optoelectronic, (IEEE, 2010), 1–3.
  6. P. O. Idwasi, G. W. Small, R. J. Combs, R. B. Knapp, and R. T. Kroutil, “Multiple filtering strategy for the automated detection of ethanol by passive Fourier transform infrared spectrometry,” Appl. Spectrosc. 55(11), 1544–1552 (2001).
    [Crossref]
  7. T. Tarumi, G. W. Small, R. J. Combs, and R. T. Kroutil, “Remote detection of heated ethanol plumes by airborne passive Fourier transform infrared spectrometry,” Appl. Spectrosc. 57(11), 1432–1441 (2003).
    [Crossref] [PubMed]
  8. M. Azzazy, T. Chau, M. Wu, and T. Tanbun-Ek, “Remote sensor to detect alcohol impaired drivers,” in Lasers and Electro-Optics Society Annual Meeting,1995.8th Annual Meeting Conference Proceedings,Volume 1., IEEE, (IEEE, 1995), pp. 320–321.
    [Crossref]
  9. H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).
  10. P. Kluczynski and S. Lundqvist, “Method and apparatus for remote detection of alcohol vapor in the atmosphere,” US patent 9068885 B2 (Jun 30 2015).
  11. O. Ahmed, “System and method for determining a vehicle driver's blood/alcohol level,” US patent 7292153 B1 (Nov 6 2007).
  12. P. C. Kamat, C. B. Roller, K. Namjou, J. D. Jeffers, A. Faramarzalian, R. Salas, and P. J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer,” Appl. Opt. 46(19), 3969–3975 (2007).
    [Crossref] [PubMed]
  13. K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.
  14. G. H. Atkinson, M. A. Wolperdinger, and J. S. Pilgrim, “ILS sensors for alcohol detection within vehicles,” US patent 5907407 (May 25 1999).
  15. N. Shuji, “Alcohol detector in vehicle,” Parent JP2000230900 (A) (2000).
  16. M. Schuetz, J. Bufton, and C. R. Prasad, “A Mid-IR DIAL System Using Interband Cascade Laser Diodes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), 1–2.
  17. T. A. Alobaidi and D. W. Hill, “A helium-neon laser infrared analyser for alcohol vapour in the breath,” J. Phys. Educ. 8(1), 30–32 (1975).
    [Crossref] [PubMed]
  18. M. T. Azzazy and A. Dabiri, “Method and apparatus for detecting vehicle occupants under the influence of alcohol,” US parent 5349187 (Sep 20 1994).
  19. J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” J. Appl. Remote Sens. 7(1), 1–13 (2013).
    [Crossref]
  20. J. Mlynczak, J. Kubicki, and K. Kopczynski, “Stand-off detection of alcohol in car cabins,” J. Appl. Remote Sens. 8(1), 083627 (2014).
    [Crossref]
  21. J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
    [Crossref]
  22. K. Kopczyński, J. Kubicki, J. Młyńczak, J. Mierczyk, and K. Hackiewicz, “Stand-off detection of alcohol vapours in moving cars,” in Laser Technology 2016: Progress and Applications of Lasers, (International Society for Optics and Photonics, 2016), 101590Z.
  23. O. Bridgeman and E. Aldrich, “Vapor pressure tables for water,” J. Heat Transfer 86(2), 279–286 (1964).
    [Crossref]
  24. D. R. Stull, “Vapor pressure of pure substances. Organic and inorganic compounds,” Ind. Eng. Chem. 39(4), 517–540 (1947).
    [Crossref]
  25. A. Gubkov, N. Fermor, and N. Smirnov, “Vapor pressure of mono-poly systems,” Zh. Prikl. Khim 37, 2204–2210 (1964).
  26. J. J. Harrison and P. F. Bernath, “Infrared absorption cross sections for propane (C3H8) in the 3 mu m region,” J. Quant. Spectrosc. Ra. 111(9), 1282–1288 (2010).
    [Crossref]
  27. D. Ambrose and C. Sprake, “Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,” J. Chem. Thermodyn. 2(5), 631–645 (1970).
    [Crossref]

2016 (1)

J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
[Crossref]

2014 (3)

J. Mlynczak, J. Kubicki, and K. Kopczynski, “Stand-off detection of alcohol in car cabins,” J. Appl. Remote Sens. 8(1), 083627 (2014).
[Crossref]

X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, and F. Comeau, “Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry,” Biomed. Opt. Express 5(7), 2333–2340 (2014).
[Crossref] [PubMed]

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

2013 (1)

J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” J. Appl. Remote Sens. 7(1), 1–13 (2013).
[Crossref]

2010 (1)

J. J. Harrison and P. F. Bernath, “Infrared absorption cross sections for propane (C3H8) in the 3 mu m region,” J. Quant. Spectrosc. Ra. 111(9), 1282–1288 (2010).
[Crossref]

2007 (1)

2003 (1)

2002 (1)

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[Crossref]

2001 (1)

2000 (1)

1999 (1)

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

1975 (1)

T. A. Alobaidi and D. W. Hill, “A helium-neon laser infrared analyser for alcohol vapour in the breath,” J. Phys. Educ. 8(1), 30–32 (1975).
[Crossref] [PubMed]

1970 (1)

D. Ambrose and C. Sprake, “Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,” J. Chem. Thermodyn. 2(5), 631–645 (1970).
[Crossref]

1964 (2)

A. Gubkov, N. Fermor, and N. Smirnov, “Vapor pressure of mono-poly systems,” Zh. Prikl. Khim 37, 2204–2210 (1964).

O. Bridgeman and E. Aldrich, “Vapor pressure tables for water,” J. Heat Transfer 86(2), 279–286 (1964).
[Crossref]

1947 (1)

D. R. Stull, “Vapor pressure of pure substances. Organic and inorganic compounds,” Ind. Eng. Chem. 39(4), 517–540 (1947).
[Crossref]

Aldrich, E.

O. Bridgeman and E. Aldrich, “Vapor pressure tables for water,” J. Heat Transfer 86(2), 279–286 (1964).
[Crossref]

Alobaidi, T. A.

T. A. Alobaidi and D. W. Hill, “A helium-neon laser infrared analyser for alcohol vapour in the breath,” J. Phys. Educ. 8(1), 30–32 (1975).
[Crossref] [PubMed]

Ambrose, D.

D. Ambrose and C. Sprake, “Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,” J. Chem. Thermodyn. 2(5), 631–645 (1970).
[Crossref]

Baillargeon, J. N.

Berezin, A.

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

Berezin, A. G.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[Crossref]

Bernath, P. F.

J. J. Harrison and P. F. Bernath, “Infrared absorption cross sections for propane (C3H8) in the 3 mu m region,” J. Quant. Spectrosc. Ra. 111(9), 1282–1288 (2010).
[Crossref]

Bridgeman, O.

O. Bridgeman and E. Aldrich, “Vapor pressure tables for water,” J. Heat Transfer 86(2), 279–286 (1964).
[Crossref]

Bugoslavsky, Y.

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

Capasso, F.

Chen, B.

Cheng, C.

S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote Detection of Alcohol Concentration in Vehicle Based on TDLAS,” in Symposium on Photonics & Optoelectronic, (IEEE, 2010), 1–3.

Cho, A. Y.

Combs, R. J.

Comeau, F.

Curl, R. F.

Ershov, O.

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

Ershov, O. V.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[Crossref]

Faramarzalian, A.

Fermor, N.

A. Gubkov, N. Fermor, and N. Smirnov, “Vapor pressure of mono-poly systems,” Zh. Prikl. Khim 37, 2204–2210 (1964).

Geng, H.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Gmachl, C.

Gubkov, A.

A. Gubkov, N. Fermor, and N. Smirnov, “Vapor pressure of mono-poly systems,” Zh. Prikl. Khim 37, 2204–2210 (1964).

Guo, X.

Harrison, J. J.

J. J. Harrison and P. F. Bernath, “Infrared absorption cross sections for propane (C3H8) in the 3 mu m region,” J. Quant. Spectrosc. Ra. 111(9), 1282–1288 (2010).
[Crossref]

Hill, D. W.

T. A. Alobaidi and D. W. Hill, “A helium-neon laser infrared analyser for alcohol vapour in the breath,” J. Phys. Educ. 8(1), 30–32 (1975).
[Crossref] [PubMed]

Hutchinson, A. L.

Idwasi, P. O.

Jeffers, J. D.

Jie, S.

S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote Detection of Alcohol Concentration in Vehicle Based on TDLAS,” in Symposium on Photonics & Optoelectronic, (IEEE, 2010), 1–3.

Jun, R.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Kamat, P. C.

Kan, R. F.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Knapp, R. B.

Kopczynski, K.

J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
[Crossref]

J. Mlynczak, J. Kubicki, and K. Kopczynski, “Stand-off detection of alcohol in car cabins,” J. Appl. Remote Sens. 8(1), 083627 (2014).
[Crossref]

J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” J. Appl. Remote Sens. 7(1), 1–13 (2013).
[Crossref]

Kosterev, A. A.

Kroutil, R. T.

Kubicki, J.

J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
[Crossref]

J. Mlynczak, J. Kubicki, and K. Kopczynski, “Stand-off detection of alcohol in car cabins,” J. Appl. Remote Sens. 8(1), 083627 (2014).
[Crossref]

J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” J. Appl. Remote Sens. 7(1), 1–13 (2013).
[Crossref]

Kutnyak, V.

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

Li, Z. Y.

S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote Detection of Alcohol Concentration in Vehicle Based on TDLAS,” in Symposium on Photonics & Optoelectronic, (IEEE, 2010), 1–3.

Liu, J. G.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Liu, Y.

Mandelis, A.

Matsunaga, H.

K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.

McCann, P. J.

Mierczyk, J.

J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
[Crossref]

Mitsubayashi, K.

K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.

Mlynczak, J.

J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
[Crossref]

J. Mlynczak, J. Kubicki, and K. Kopczynski, “Stand-off detection of alcohol in car cabins,” J. Appl. Remote Sens. 8(1), 083627 (2014).
[Crossref]

J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” J. Appl. Remote Sens. 7(1), 1–13 (2013).
[Crossref]

Nadezhdinskii, A.

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

Nadezhdinskii, A. I.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[Crossref]

Nakanishi, Y.

K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.

Namjou, K.

Nishio, G.

K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.

Roller, C. B.

Salas, R.

Sivco, D. L.

Small, G. W.

Smirnov, N.

A. Gubkov, N. Fermor, and N. Smirnov, “Vapor pressure of mono-poly systems,” Zh. Prikl. Khim 37, 2204–2210 (1964).

Sprake, C.

D. Ambrose and C. Sprake, “Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,” J. Chem. Thermodyn. 2(5), 631–645 (1970).
[Crossref]

Stull, D. R.

D. R. Stull, “Vapor pressure of pure substances. Organic and inorganic compounds,” Ind. Eng. Chem. 39(4), 517–540 (1947).
[Crossref]

Tang, Q. J.

S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote Detection of Alcohol Concentration in Vehicle Based on TDLAS,” in Symposium on Photonics & Optoelectronic, (IEEE, 2010), 1–3.

Tarumi, T.

Tittel, F. K.

Toda, S.

K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.

Xu, Z. Y.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Yao, L.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Zhang, Y. J.

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Zhou, Q.

Appl. Opt. (2)

Appl. Phys. B (1)

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[Crossref]

Appl. Spectrosc. (2)

Biomed. Opt. Express (1)

Ind. Eng. Chem. (1)

D. R. Stull, “Vapor pressure of pure substances. Organic and inorganic compounds,” Ind. Eng. Chem. 39(4), 517–540 (1947).
[Crossref]

J. Appl. Remote Sens. (3)

J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” J. Appl. Remote Sens. 7(1), 1–13 (2013).
[Crossref]

J. Mlynczak, J. Kubicki, and K. Kopczynski, “Stand-off detection of alcohol in car cabins,” J. Appl. Remote Sens. 8(1), 083627 (2014).
[Crossref]

J. Mlynczak, J. Kubicki, K. Kopczynski, and J. Mierczyk, “Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars,” J. Appl. Remote Sens. 10(4), 046010 (2016).
[Crossref]

J. Chem. Thermodyn. (1)

D. Ambrose and C. Sprake, “Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,” J. Chem. Thermodyn. 2(5), 631–645 (1970).
[Crossref]

J. Heat Transfer (1)

O. Bridgeman and E. Aldrich, “Vapor pressure tables for water,” J. Heat Transfer 86(2), 279–286 (1964).
[Crossref]

J. Phys. Educ. (1)

T. A. Alobaidi and D. W. Hill, “A helium-neon laser infrared analyser for alcohol vapour in the breath,” J. Phys. Educ. 8(1), 30–32 (1975).
[Crossref] [PubMed]

J. Quant. Spectrosc. Ra. (1)

J. J. Harrison and P. F. Bernath, “Infrared absorption cross sections for propane (C3H8) in the 3 mu m region,” J. Quant. Spectrosc. Ra. 111(9), 1282–1288 (2010).
[Crossref]

Physics (College Park Md.) (1)

H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, and R. Jun, “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Physics (College Park Md.) 63, 43301 (2014).

Spectrochim. Acta A (1)

A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochim. Acta A 55(10), 2049–2055 (1999).
[Crossref]

Zh. Prikl. Khim (1)

A. Gubkov, N. Fermor, and N. Smirnov, “Vapor pressure of mono-poly systems,” Zh. Prikl. Khim 37, 2204–2210 (1964).

Other (10)

M. T. Azzazy and A. Dabiri, “Method and apparatus for detecting vehicle occupants under the influence of alcohol,” US parent 5349187 (Sep 20 1994).

S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote Detection of Alcohol Concentration in Vehicle Based on TDLAS,” in Symposium on Photonics & Optoelectronic, (IEEE, 2010), 1–3.

P. Kluczynski and S. Lundqvist, “Method and apparatus for remote detection of alcohol vapor in the atmosphere,” US patent 9068885 B2 (Jun 30 2015).

O. Ahmed, “System and method for determining a vehicle driver's blood/alcohol level,” US patent 7292153 B1 (Nov 6 2007).

M. Azzazy, T. Chau, M. Wu, and T. Tanbun-Ek, “Remote sensor to detect alcohol impaired drivers,” in Lasers and Electro-Optics Society Annual Meeting,1995.8th Annual Meeting Conference Proceedings,Volume 1., IEEE, (IEEE, 1995), pp. 320–321.
[Crossref]

K. Kopczyński, J. Kubicki, J. Młyńczak, J. Mierczyk, and K. Hackiewicz, “Stand-off detection of alcohol vapours in moving cars,” in Laser Technology 2016: Progress and Applications of Lasers, (International Society for Optics and Photonics, 2016), 101590Z.

K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, and Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” (2005), retrieved 8, 20.

G. H. Atkinson, M. A. Wolperdinger, and J. S. Pilgrim, “ILS sensors for alcohol detection within vehicles,” US patent 5907407 (May 25 1999).

N. Shuji, “Alcohol detector in vehicle,” Parent JP2000230900 (A) (2000).

M. Schuetz, J. Bufton, and C. R. Prasad, “A Mid-IR DIAL System Using Interband Cascade Laser Diodes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Absorption spectra of ethanol in wavelength region from 3 to 4μm based on PNNL database; (b) Absorption spectra of water around 3.345um; (c) Absorption spectra of ethanol around 3.345um; (d)Measured transmission spectra of ethanol and water based on ICL source.
Fig. 2
Fig. 2 Experimental setup for detection of ethanol vapors
Fig. 3
Fig. 3 (a) Emission wavelength of laser for different temperatures and driving currents; (b) Measured P-I curve for ICL laser operating at 293K.
Fig. 4
Fig. 4 Molecular pressure of saturated ethanol vapor as a function of temperature.
Fig. 5
Fig. 5 (a) detection signal versus injected current of laser and detail of weak water absorption feature around ethanol absorption peak; (b) reference signal versus injected current of laser.
Fig. 6
Fig. 6 (a) measured correction factor of ethanol under different conditions; (b) sensing signal curves correspond to different conditions.
Fig. 7
Fig. 7 (a) Measured ethanol value without correction versus actual ethanol concentration in 2m and 4m respectively; (b) Measured ethanol value with correction versus actual ethanol concentration.
Fig. 8
Fig. 8 (a) Measured ethanol concentration versus measurement time for 0.3, 0.6, 0.9, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ml of saturated ethanol vapors injected into the gas pipe. (b) Reference water concentration levels measured at the same time.

Tables (1)

Tables Icon

Table 1 Absorption coefficients of ethanol and water based on PNNL

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

I t = I 0 exp ( α w ( λ ) C w L α e ( λ ) C e L )
I 0 = I s T ( λ ) ( 1 γ )
I s = I R b ( λ )
I r = I T b ( λ )
T b ( λ ) + R b ( λ ) + A b ( λ ) = 1
I s = I r R b ( λ ) / T b ( λ )
I t = I r R b ( λ ) / T b ( λ ) T ( λ ) ( 1 γ ) exp ( α w ( λ ) C w L α e ( λ ) C e L )
S r = I r D r ( λ )
S t = I t D t ( λ )
S t = S r D r ( λ ) / D t ( λ ) R b ( λ ) / T b ( λ ) T ( λ ) ( 1 γ ) exp ( α w ( λ ) C w L α e ( λ ) C e L )
K ( λ ) = D r ( λ ) / D t ( λ ) R b ( λ ) / T b ( λ )
S t 1 = S r 1 K ( λ 1 ) T exp ( α w ( λ 1 ) C w L α e ( λ 1 ) C e L )
S t 2 = S r 2 K ( λ 2 ) T exp ( α w ( λ 2 ) C w L α e ( λ 2 ) C e L )
S t 3 = S r 3 K ( λ 3 ) T exp ( α w ( λ 3 ) C w L α e ( λ 3 ) C e L )
Δ w 12 = α w ( λ 1 ) α w ( λ 2 )
Δ w 23 = α w ( λ 2 ) α w ( λ 3 )
Δ e 12 = α e ( λ 1 ) α e ( λ 2 )
Δ w e = Δ e 23 Δ w 12 Δ e 12 Δ w 23
C e = Δ w 12 ln ( S r 2 K ( λ 2 ) S t 3 S r 3 K ( λ 3 ) S t 2 ) Δ w 23 ln ( S r 1 K ( λ 1 ) S t 2 S r 2 K ( λ 2 ) S t 1 ) Δ w e L
C w = Δ e 23 ln ( S r 1 K ( λ 1 ) S t 2 S r 2 K ( λ 2 ) S t 1 ) Δ e 12 ln ( S r 2 K ( λ 2 ) S t 3 S r 3 K ( λ 3 ) S t 2 ) Δ w e L
Δ w 12 ln ( K ( λ 3 ) K ( λ 2 ) ) Δ w 23 ln ( K ( λ 2 ) K ( λ 1 ) ) Δ w e = Δ w 12 ln ( S r 2 S t 3 S r 3 S t 2 ) Δ w 23 ln ( S r 1 S t 2 S r 2 S t 1 ) Δ w e = C e 0
Δ e 23 ln ( K ( λ 2 ) K ( λ 1 ) ) Δ e 12 ln ( K ( λ 3 ) K ( λ 2 ) ) Δ w e = Δ e 23 ln ( S r 1 S t 2 S r 2 S t 1 ) Δ w 23 ln ( S r 2 S t 3 S r 3 S t 2 ) Δ w e = C w 0
C e = Δ w 12 ln ( S r 2 S t 3 S r 3 S t 2 ) Δ w 23 ln ( S r 1 S t 2 S r 2 S t 1 ) Δ w e L C e 0 L
C w = Δ e 23 ln ( S r 1 S t 2 S r 2 S t 1 ) Δ e 12 ln ( S r 2 S t 3 S r 3 S t 2 ) Δ w e L C w 0 L
C S E V = 5. 9 76 k P a 101.325 k P a 10 6 5 8 9 78
C = V V g p C S E V 25. 75 2 V

Metrics