Abstract

Low propagation loss Ge23Sb7S70 waveguides (0.56 dB/cm) are fabricated in a wafer scale process. Simulation of a 2 cm long, 1.2 μm wide waveguide with 100 ps/nm/km peak dispersion predicts coherent supercontinuum generation at 1.55 μm pump wavelength. Octave-spanning supercontinuum using a dispersive wave is experimentally demonstrated using picojoule-level energy (26 pJ, 240 fs pulse width, 77 W peak power) pulses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser

Shangran Xie, Nikolai Tolstik, John C. Travers, Evgeni Sorokin, Celine Caillaud, Johann Troles, Philip St.J. Russell, and Irina T. Sorokina
Opt. Express 24(11) 12406-12413 (2016)

Simulation of octave spanning mid-infrared supercontinuum generation in dispersion-varying planar waveguides

Hongyu Hu, Xiang Zhang, Wenbo Li, and Niloy K. Dutta
Appl. Opt. 54(11) 3448-3454 (2015)

Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths

Marco A. G. Porcel, Florian Schepers, Jörn P. Epping, Tim Hellwig, Marcel Hoekman, René G. Heideman, Peter J. M. van der Slot, Chris J. Lee, Robert Schmidt, Rudolf Bratschitsch, Carsten Fallnich, and Klaus-J. Boller
Opt. Express 25(2) 1542-1554 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  3. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
    [Crossref] [PubMed]
  4. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
    [Crossref]
  5. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
    [Crossref]
  6. S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
    [Crossref]
  7. O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
    [Crossref]
  8. O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
    [Crossref]
  9. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
    [Crossref] [PubMed]
  10. Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
    [Crossref]
  11. D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
    [Crossref] [PubMed]
  12. N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
    [Crossref]
  13. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /w/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [Crossref] [PubMed]
  14. G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Crystalline Solids 130, 111–143 (1991).
    [Crossref]
  15. J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
    [Crossref]
  16. M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
    [Crossref]
  17. J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).
  18. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
    [Crossref]
  19. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
    [Crossref]
  20. J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
    [Crossref]
  21. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
    [Crossref] [PubMed]
  22. S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
    [Crossref]
  23. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [Crossref] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012), 5th ed.
  25. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006).
    [Crossref] [PubMed]
  26. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [Crossref]

2018 (3)

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

2017 (1)

2016 (4)

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref] [PubMed]

2015 (3)

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref] [PubMed]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

2014 (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

2008 (1)

2006 (2)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

2002 (2)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

1991 (1)

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Crystalline Solids 130, 111–143 (1991).
[Crossref]

Abouraddy, A.

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Adamietz, F.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Agarwal, A. M.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Agarwal, S.

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Crystalline Solids 130, 111–143 (1991).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012), 5th ed.

Alonso-Ramos, C.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Austin, D. R.

Baiocco, C.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Béjot, P.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Billard, F.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Bluestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Bowers, J. E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Brasch, V.

Briles, T. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Brown, T. G.

Callahan, P. T.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Camacho-Gonzalez, G. F.

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Carlie, N.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Carlson, D. R.

Cassan, E.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Chang, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Chang-Hasnain, C.

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Chen, G. F. R.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Chiles, J.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

Choi, D.-Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /w/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[Crossref] [PubMed]

Choi, J. W.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Coddington, I.

Coen, S.

Couzi, M.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

de Sterke, C. M.

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Delfyett, P.

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Désévédavy, F.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Diddams, S.

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Diddams, S. A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Drake, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Droste, S.

Du, Q.

Dubreuil, N.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Dudley, J. M.

Eggleton, B. J.

Fahrenkopf, N.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Fathpour, S.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Faucher, O.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Fredrick, C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Froggatt, M. E.

Gadret, G.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Gaeta, A. L.

Gai, X.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Geiselmann, M.

Gifford, D. K.

Gonzalez, G. F. C.

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Han, Z.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Hickstein, D. D.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Hsu, P. K.

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Hu, J.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref] [PubMed]

Huang, Y.

Ilic, B. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Ilic, R.

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Ippen, E.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Johnson, A. R.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Joshi, C.

Jost, J. D.

Jules, J.-C.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Kärtner, F. X.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Keller, U.

Khan, S.

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Kibler, B.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Kimerling, L. C.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Kippenberg, T. J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

Kita, D.

Klenner, A.

Komljenovic, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Kordts, A.

Kuo, B. P.-P.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Lamb, E. S.

Lamont, M. R.

Lamont, M. R. E.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Le Roux, X.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Lee, S. H.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Li, J.

Li, L.

Li, N.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Li, Q.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Lin, H.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref] [PubMed]

Lin, Y. H.

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Lind, A.

Lipson, M.

Luke, K.

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /w/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[Crossref] [PubMed]

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Magden, E. S.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Malinowski, M.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Mathey, P.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Mayer, A. S.

Michon, J.

Mouawad, O.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Nader, N.

Newbury, N. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref] [PubMed]

Norberg, E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Novak, S.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Oh, D. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Okawachi, Y.

Paesler, M.

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Crystalline Solids 130, 111–143 (1991).
[Crossref]

Papp, S.

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Papp, S. B.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref] [PubMed]

Petit, L.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Pfeiffer, G.

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Crystalline Solids 130, 111–143 (1991).
[Crossref]

Pfeiffer, M. H. P.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

Qiao, P.

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Radic, S.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Rao, A.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Richardson, K.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Richardson, K. A.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Richardson, M.

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Rodriguez, V.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Ruocco, A.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Serna, S.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Shabahang, S.

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Shah, L.

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Shtyrkova, K.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Sims, A.

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Sinclair, L. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Singh, N.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Smektala, F.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Smith, C.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Sohn, B.-U.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Soller, B. J.

Spencer, D. T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Srinivasan, K.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref] [PubMed]

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Stone, J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Suh, M.-G.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Tan, D. T. H.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Tao, G.

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Theogarajan, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Tremblay, J. E.

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Vahala, K.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Vermeulen, D.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Vivien, L.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Volet, N.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Wang, R.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Watts, M. R.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Westly, D.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref] [PubMed]

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Wise, F. W.

Wolfe, M. S.

Wu, M. C.

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

Xin, M.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Yadav, A.

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

Yang, K. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Yang, Z.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Zervas, M.

Zhang, W.

Appl. Phys. B (1)

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Appl. Phys. Lett. (1)

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

J. Non-Crystalline Solids (1)

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Crystalline Solids 130, 111–143 (1991).
[Crossref]

Laser & Photonics Rev. (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser & Photonics Rev. 8, 792–798 (2014).
[Crossref]

Light. Sci. &Amp; Appl. (1)

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm,” Light. Sci. &Amp; Appl. 7, 17131 (2018).
[Crossref]

Mater. Chem. Phys. (1)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Optica (1)

Photonics Res. (1)

S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, and L. Vivien, “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides,” Photonics Res. 6, B37 (2018).
[Crossref]

Reports on Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Sci. Reports (1)

J. W. Choi, Z. Han, B.-U. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Reports 6, 39234 (2016).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Other (5)

M. Malinowski, J. E. Tremblay, G. F. C. Gonzalez, A. Rao, S. Khan, P. K. Hsu, A. Yadav, K. A. Richardson, P. Delfyett, M. C. Wu, and S. Fathpour, “Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation,” in 2017 IEEE Photonics Conference (IPC), (2017).
[Crossref]

J. E. Tremblay, Y. H. Lin, P. K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. Chang-Hasnain, K. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in 2017 Conference on Lasers and Electro-Optics (CLEO), (2017).

S. Shabahang, A. Sims, G. Tao, L. Shah, M. Richardson, and A. Abouraddy, “Multi-octave mid-infrared supercontinuum generation in robust chalcogenide nanowires using a thulium fiber laser,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, 2016), p. AT2C.2.
[Crossref]

Q. Li, T. C. Briles, D. Westly, J. Stone, R. Ilic, S. Diddams, S. Papp, and K. Srinivasan, “Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip,” in Frontiers in Optics 2015, (Optical Society of America, 2015), p. FW6C.5.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012), 5th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM cross section of the fabricated devices. Red: Ge23Sb7S70 rib waveguide. Green: Si3N4 spot size converter layer.
Fig. 2
Fig. 2 Comparison of simulated dispersion with dispersion measured using the ring resonator FSR method, showing agreement for both TE and TM modes.
Fig. 3
Fig. 3 Waveguide propagation loss measured using (a) ring resonator quality factor and (b) OFDR backscattering signal. The quality factor is over 106 and the extracted propagation loss is 0.56 dB/cm.
Fig. 4
Fig. 4 Simulated dispersion for 1.2 μm wide waveguide, showing 100 ps/nm/km dispersion peak around 1.65 μm, and zero-dispersion wavelengths of 1.35 μm and 2.10 μm
Fig. 5
Fig. 5 Low pulse energy supercontinuum generation and simulation. (a) Simulation of 26 pJ pulses after 2 cm propagation, overlapped on the experimental spectrum. The spectrometer bandwidth is limited to 0.9 μm to 2.5 μm. (b) Coherence properties of the simulated supercontinuum, showing near-unity coherence both at the 1.03 μm dispersive wave end and the 2.06 μm end of the supercontinuum.

Metrics