Abstract

Fluorescence microscopy allows specific and selective imaging of biological samples. Unfortunately, unspecific background due to auto-fluorescence, scattering, and non-ideal labeling efficiency often adversely affect imaging. Surface plasmon-coupled emission (SPCE) is known to selectively mediate fluorescence that spatially originates from regions close to the metal interface. However, SPCE combined with fluorescence imaging has not been widely successful so far, most likely due to its limited photon yield, which makes it tedious to identify the exact window of the application. As the strength of SPCE based imaging is its unique sectioning capabilities. We decided to identify its clear beneficial operational regime for biological settings by interrogating samples in the presence of ascending background levels. For fluorescent beads as well as live-cell imaging as examples, we show how to extend the imaging performance in extremely high photon background environments. In a common setup using plasmonic gold-coated coverslips using an objective-based total internal reflection fluorescence microscope (TIRF-M), we theoretically and experimentally characterize our fluoplasmonics (f-Pics) approach by providing general user guidance in choosing f-Pics over TIRF-M or classical wide-field (WF).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging

Ruei-Yu He, Yuan-Deng Su, Keng-Chi Cho, Chun-Yun Lin, Nan-Shan Chang, Chih-Han Chang, and Shean-Jen Chen
Opt. Express 17(8) 5987-5997 (2009)

Full-field supercritical angle fluorescence microscopy for live cell imaging

Thomas Barroca, Karla Balaa, Julie Delahaye, Sandrine Lévêque-Fort, and Emmanuel Fort
Opt. Lett. 36(16) 3051-3053 (2011)

Fluorescence correlation spectroscopy in a reverse Kretchmann surface plasmon assisted microscope

N. Calander, P. Muthu, Z. Gryczynski, I. Gryczynski, and J. Borejdo
Opt. Express 16(17) 13381-13390 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
    [Crossref] [PubMed]
  2. A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci. 123(21), 3621–3628 (2010).
    [Crossref] [PubMed]
  3. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [Crossref] [PubMed]
  4. B. Schreiber, K. Elsayad, and K. G. Heinze, “Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy,” Opt. Lett. 42(19), 3880–3883 (2017).
    [Crossref] [PubMed]
  5. J. Enderlein, I. Gregor, and T. Ruckstuhl, “Imaging properties of supercritical angle fluorescence optics,” Opt. Express 19(9), 8011–8018 (2011).
    [Crossref] [PubMed]
  6. D. Axelrod, “Evanescent excitation and emission in fluorescence microscopy,” Biophys. J. 104(7), 1401–1409 (2013).
    [Crossref] [PubMed]
  7. Y. Fang, “Total internal reflection fluorescence quantification of receptor pharmacology,” Biosensors (Basel) 5(2), 223–240 (2015).
    [Crossref] [PubMed]
  8. K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90(25), 251116 (2007).
    [Crossref] [PubMed]
  9. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005).
    [Crossref] [PubMed]
  10. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [Crossref] [PubMed]
  11. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [Crossref] [PubMed]
  12. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
    [Crossref] [PubMed]
  13. H. Yokota, K. Saito, and T. Yanagida, “Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution,” Phys. Rev. Lett. 80(20), 4606–4609 (1998).
    [Crossref]
  14. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
    [Crossref] [PubMed]
  15. R. Y. He, C. Y. Lin, Y. D. Su, K. C. Chiu, N. S. Chang, H. L. Wu, and S. J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
    [Crossref] [PubMed]
  16. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
    [Crossref] [PubMed]
  17. P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
    [Crossref] [PubMed]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  19. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [Crossref] [PubMed]
  20. A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
    [Crossref] [PubMed]
  21. S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
    [Crossref] [PubMed]
  22. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
    [Crossref] [PubMed]
  23. R. B. Balili, “Transfer matrix method in nanophotonics,” Int. J. Modern Phys.: Conf. Series 17, 159–168 (2012).
  24. K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
    [Crossref]
  25. R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
    [Crossref]
  26. R. R. Chance, A. Prock, and R. Silbey, “Decay of an emitting dipole between 2 parallel mirrors,” J. Chem. Phys. 62(3), 771–772 (1975).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [Crossref]
  28. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  29. M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
    [Crossref] [PubMed]
  30. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref] [PubMed]
  31. K. L. Ellefsen, J. L. Dynes, and I. Parker, “Spinning-Spot Shadowless TIRF Microscopy,” PLoS One 10(8), e0136055 (2015).
    [Crossref] [PubMed]
  32. K. N. Fish, “Total internal reflection fluorescence (TIRF) microscopy,” Curr. Protoc. Cytom. 12, 18 (2009).
    [PubMed]
  33. D. Allan, Caswell, T., Keim, N., van der Wel, C., trackpy: Trackpy v0.3.2, 2016.
  34. P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
    [Crossref] [PubMed]
  35. D. Necas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” Cent. Eur. J. Phys. 10, 181–188 (2012).
  36. K. Balaa, V. Devauges, Y. Goulam, V. Studer, S. Lévêque-Fort, E. E. D. C. P. S. E. Fort, and G. Von Bally, “Live cell imaging with surface plasmon-mediated fluorescence microscopy,” in Advanced Microscopy Techniques, Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), pp. 7367–7310.
  37. W. T. Tang, E. Chung, Y. H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
    [Crossref] [PubMed]
  38. B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
    [Crossref] [PubMed]
  39. Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
    [Crossref] [PubMed]
  40. R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
    [Crossref] [PubMed]
  41. M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
    [Crossref] [PubMed]
  42. N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
    [Crossref]
  43. J. Deschamps, M. Mund, and J. Ries, “3D superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
    [Crossref] [PubMed]
  44. R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
    [Crossref] [PubMed]

2017 (2)

B. Schreiber, K. Elsayad, and K. G. Heinze, “Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy,” Opt. Lett. 42(19), 3880–3883 (2017).
[Crossref] [PubMed]

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

2015 (5)

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Y. Fang, “Total internal reflection fluorescence quantification of receptor pharmacology,” Biosensors (Basel) 5(2), 223–240 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

K. L. Ellefsen, J. L. Dynes, and I. Parker, “Spinning-Spot Shadowless TIRF Microscopy,” PLoS One 10(8), e0136055 (2015).
[Crossref] [PubMed]

B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
[Crossref] [PubMed]

2014 (5)

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

J. Deschamps, M. Mund, and J. Ries, “3D superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
[Crossref] [PubMed]

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

D. Necas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” Cent. Eur. J. Phys. 10, 181–188 (2012).

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

R. B. Balili, “Transfer matrix method in nanophotonics,” Int. J. Modern Phys.: Conf. Series 17, 159–168 (2012).

2011 (1)

2010 (3)

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci. 123(21), 3621–3628 (2010).
[Crossref] [PubMed]

R. Y. He, C. Y. Lin, Y. D. Su, K. C. Chiu, N. S. Chang, H. L. Wu, and S. J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
[Crossref] [PubMed]

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

2009 (3)

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
[Crossref] [PubMed]

R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
[Crossref] [PubMed]

K. N. Fish, “Total internal reflection fluorescence (TIRF) microscopy,” Curr. Protoc. Cytom. 12, 18 (2009).
[PubMed]

2008 (1)

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
[Crossref] [PubMed]

2007 (4)

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y. H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90(25), 251116 (2007).
[Crossref] [PubMed]

2006 (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[Crossref] [PubMed]

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

2001 (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

2000 (1)

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

1998 (1)

H. Yokota, K. Saito, and T. Yanagida, “Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution,” Phys. Rev. Lett. 80(20), 4606–4609 (1998).
[Crossref]

1975 (2)

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Decay of an emitting dipole between 2 parallel mirrors,” J. Chem. Phys. 62(3), 771–772 (1975).
[Crossref]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Arwin, H.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Axelrod, D.

D. Axelrod, “Evanescent excitation and emission in fluorescence microscopy,” Biophys. J. 104(7), 1401–1409 (2013).
[Crossref] [PubMed]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Badugu, R.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Balili, R. B.

R. B. Balili, “Transfer matrix method in nanophotonics,” Int. J. Modern Phys.: Conf. Series 17, 159–168 (2012).

Barroca, T.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Bauch, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Bon, P.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Borejdo, J.

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Bourg, N.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Brunstein, M.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Cai, W.-P.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Calander, N.

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Cao, S.-H.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Chance, R. R.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Decay of an emitting dipole between 2 parallel mirrors,” J. Chem. Phys. 62(3), 771–772 (1975).
[Crossref]

Chang, C. H.

Chang, G. L.

Chang, N. S.

Chen, S. J.

Chen, Y.

Chiu, K. C.

Cho, K. C.

Chowdhury, M. H.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Chung, E.

de Torres, J.

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

Deschamps, J.

Dostalek, J.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Du, L.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Dupuis, G.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Dynes, J. L.

K. L. Ellefsen, J. L. Dynes, and I. Parker, “Spinning-Spot Shadowless TIRF Microscopy,” PLoS One 10(8), e0136055 (2015).
[Crossref] [PubMed]

Ellefsen, K. L.

K. L. Ellefsen, J. L. Dynes, and I. Parker, “Spinning-Spot Shadowless TIRF Microscopy,” PLoS One 10(8), e0136055 (2015).
[Crossref] [PubMed]

Elsayad, K.

Enderlein, J.

Fang, Y.

Y. Fang, “Total internal reflection fluorescence quantification of receptor pharmacology,” Biosensors (Basel) 5(2), 223–240 (2015).
[Crossref] [PubMed]

Fish, K. N.

K. N. Fish, “Total internal reflection fluorescence (TIRF) microscopy,” Curr. Protoc. Cytom. 12, 18 (2009).
[PubMed]

Fort, E.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Ge, B.

Ghenuche, P.

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

Gray, S. K.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
[Crossref] [PubMed]

Gregor, I.

Grigoriev, V.

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

Gryczynski, I.

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Gryczynski, Z.

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Halter, M.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Han, L.

He, R. Y.

Heinze, K. G.

Hérault, K.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Johansen, K.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Kim, Y. H.

Klapetek, P.

D. Necas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” Cent. Eur. J. Phys. 10, 181–188 (2012).

Kou, S.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kuang, C.

Lakowicz, J. R.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
[Crossref] [PubMed]

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90(25), 251116 (2007).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Lecart, S.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Leveque-Fort, S.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Li, Y.-Q.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Lin, C. H.

Lin, C. Y.

Lin, J.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Liu, Q.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Liu, X.

Luchowski, R.

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

Lundstrom, I.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Ma, Y.

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Mattheyses, A. L.

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci. 123(21), 3621–3628 (2010).
[Crossref] [PubMed]

Mayet, C.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Mettikolla, P.

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Miller, A. H.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[Crossref]

Ming, H.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

Moparthi, S. B.

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

Mund, M.

Muthu, P.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Necas, D.

D. Necas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” Cent. Eur. J. Phys. 10, 181–188 (2012).

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Oheim, M.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Parker, I.

K. L. Ellefsen, J. L. Dynes, and I. Parker, “Spinning-Spot Shadowless TIRF Microscopy,” PLoS One 10(8), e0136055 (2015).
[Crossref] [PubMed]

Peterson, A. W.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Plant, A. L.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Pond, J.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
[Crossref] [PubMed]

Prock, A.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Decay of an emitting dipole between 2 parallel mirrors,” J. Chem. Phys. 62(3), 771–772 (1975).
[Crossref]

Rappoport, J. Z.

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci. 123(21), 3621–3628 (2010).
[Crossref] [PubMed]

Ray, K.

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90(25), 251116 (2007).
[Crossref] [PubMed]

Ries, J.

Rosenfeld, M.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Ruckstuhl, T.

Rui, G.

Saito, K.

H. Yokota, K. Saito, and T. Yanagida, “Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution,” Phys. Rev. Lett. 80(20), 4606–4609 (1998).
[Crossref]

Schreiber, B.

Sheppard, C. J. R.

Si, G.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Decay of an emitting dipole between 2 parallel mirrors,” J. Chem. Phys. 62(3), 771–772 (1975).
[Crossref]

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[Crossref]

Simon, S. M.

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci. 123(21), 3621–3628 (2010).
[Crossref] [PubMed]

So, P. T. C.

Su, Y. D.

Szmacinski, H.

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90(25), 251116 (2007).
[Crossref] [PubMed]

Tang, W. T.

Teremetz, M.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Toma, K.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Toma, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Tona, A.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Tourain, C.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Toussaint, K. C.

Wang, P.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

Wang, R.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Waters, J. C.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
[Crossref] [PubMed]

Wenger, J.

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

Wu, H. L.

Yanagida, T.

H. Yokota, K. Saito, and T. Yanagida, “Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution,” Phys. Rev. Lett. 80(20), 4606–4609 (1998).
[Crossref]

Yokota, H.

H. Yokota, K. Saito, and T. Yanagida, “Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution,” Phys. Rev. Lett. 80(20), 4606–4609 (1998).
[Crossref]

You, S.

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Yuan, X.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Zhang, D.

Zhang, Q.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Zhu, L.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

ACS Nano (1)

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-free Bloch surface waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[Crossref] [PubMed]

Anal. Chem. (1)

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90(25), 251116 (2007).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Biophys. J. (3)

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

D. Axelrod, “Evanescent excitation and emission in fluorescence microscopy,” Biophys. J. 104(7), 1401–1409 (2013).
[Crossref] [PubMed]

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Biosensors (Basel) (1)

Y. Fang, “Total internal reflection fluorescence quantification of receptor pharmacology,” Biosensors (Basel) 5(2), 223–240 (2015).
[Crossref] [PubMed]

BMC Cell Biol. (1)

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Cent. Eur. J. Phys. (1)

D. Necas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” Cent. Eur. J. Phys. 10, 181–188 (2012).

Curr. Protoc. Cytom. (1)

K. N. Fish, “Total internal reflection fluorescence (TIRF) microscopy,” Curr. Protoc. Cytom. 12, 18 (2009).
[PubMed]

Int. J. Modern Phys.: Conf. Series (1)

R. B. Balili, “Transfer matrix method in nanophotonics,” Int. J. Modern Phys.: Conf. Series 17, 159–168 (2012).

J Phys Chem C Nanomater Interfaces (1)

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J Phys Chem C Nanomater Interfaces 112(30), 11236–11249 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

P. Mettikolla, N. Calander, R. Luchowski, I. Gryczynski, Z. Gryczynski, and J. Borejdo, “Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence,” J. Biomed. Opt. 15(1), 017011 (2010).
[Crossref] [PubMed]

J. Cell Biol. (1)

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
[Crossref] [PubMed]

J. Cell Sci. (1)

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci. 123(21), 3621–3628 (2010).
[Crossref] [PubMed]

J. Chem. Phys. (2)

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy-transfer near interfaces - complete and quantitative description of Eu+3-mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Decay of an emitting dipole between 2 parallel mirrors,” J. Chem. Phys. 62(3), 771–772 (1975).
[Crossref]

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

Nano Lett. (1)

P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, “Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures,” Nano Lett. 14(8), 4707–4714 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lecart, E. Fort, and S. Leveque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Opt. Express (9)

J. Deschamps, M. Mund, and J. Ries, “3D superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y. H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
[Crossref] [PubMed]

R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
[Crossref] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
[Crossref] [PubMed]

R. Y. He, C. Y. Lin, Y. D. Su, K. C. Chiu, N. S. Chang, H. L. Wu, and S. J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
[Crossref] [PubMed]

J. Enderlein, I. Gregor, and T. Ruckstuhl, “Imaging properties of supercritical angle fluorescence optics,” Opt. Express 19(9), 8011–8018 (2011).
[Crossref] [PubMed]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

H. Yokota, K. Saito, and T. Yanagida, “Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution,” Phys. Rev. Lett. 80(20), 4606–4609 (1998).
[Crossref]

Plasmonics (1)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

PLoS One (1)

K. L. Ellefsen, J. L. Dynes, and I. Parker, “Spinning-Spot Shadowless TIRF Microscopy,” PLoS One 10(8), e0136055 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Traffic (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Other (2)

D. Allan, Caswell, T., Keim, N., van der Wel, C., trackpy: Trackpy v0.3.2, 2016.

K. Balaa, V. Devauges, Y. Goulam, V. Studer, S. Lévêque-Fort, E. E. D. C. P. S. E. Fort, and G. Von Bally, “Live cell imaging with surface plasmon-mediated fluorescence microscopy,” in Advanced Microscopy Techniques, Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), pp. 7367–7310.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Finite element method calculations for surface plasmon coupled emission. (a) Electric field distribution log(|E|2) of an electric dipole emitter next to an uncoated and coated (gold 30 nm) medium/glass interface (scale bar 30 nm). (b) The corresponding far-field radiation patterns for a dipole with parallel (dark green) and perpendicular (blue) orientation are depicted for dipole-to-surface distances of 30 nm (solid) and 400 nm (dashed). (c) Calculated intensities for a fluorescent sphere (black, sphere diameter: 100 nm), and a homogenously distributed background (gray) for different gold thicknesses. Intensities were calculated w/ (solid) and w/o (dashed) plasmonic excitation enhancement (red).
Fig. 2
Fig. 2 FEM calculations of fluorophore behavior. (a) Distance z depending relative fluorescence quantum yield QY/ QY 0   for different free space quantum yield QY 0 . (b) Calculated signal collected by an objective lens (NA = 1.7) for different fluorophore distances z to the uncoated (WF and TIRF) and coated (SPCE, 30nm gold coating) coverslip surface. (c) Contrast of fluorescence signal (Signal) and homogenous background (BGR) depending on dye concentration ratios for different illumination scenarios. A step like Signal/(Signal + BGR) distribution illustrates the signal-contrast in high-background environments. The signal-contrast is independent from the excitation amplitudes. For TIRF two different penetration depths (solid: 169 nm; dashed: 72 nm) were considered. The penetration depths for SPCE under SPR illumination is 64.4 ± 0.3 nm (extracted by a mono exponential decay fit, z > 20nm).
Fig. 3
Fig. 3 Experimental f-Pics setup and performance scheme of the setup and sample configuration. (a) Main optical components include scan mirror, laser (640 nm), linear polarizer (P), focus lens (FL), dichroic mirror (DM) and bandpass filter (BP). The TIRF objective back focal plane (BFP) and the image plane (IP) are indicated. (b) Measurements of fluorescent spheres on uncoated and coated coverslips for different excitation angle ϑ: undercritical ϑ< ϑ crit , critical ϑ= ϑ crit   and surface plasmon resonant (SPR) ϑ= ϑ SPR   excitation. The circles indicate analyzed objects. Scale bar: 2 µm. (c) Excitation angle ϑ dependent fluorescence of spheres on gold coatings (left), and the maximal fluorescence for different gold thickness (right) with best performance for 30 nm gold layers.
Fig. 4
Fig. 4 (a) Images of fluorescent beads (emission bandpass 697-58) in high background A647-oligonucleotides environment on uncoated (WF and TIRF) and coated (SPR, 30 nm gold) coverslips. (b) Results of the signal-to-BGR analysis for different BGR concentrations. Scale bars: 10 µm.
Fig. 5
Fig. 5 (a) Fluorescence images of living membrane stained CHO cells on uncoated (WF, TIRF) and gold coated (30 nm, SPR) coverslips. (b) Example of lateral intensity profiles (open symbols) with data fits (solid lines) representing step models to dissect image contrast. (c) Comparison of image contrast for depicted imaging modalities. Scale bars: 5 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

  k rad,obj (z) k rad (z) = NA NA P(φ,z) 0 360° P(φ,z) .
QY( z )= k rad (z)/ k rad,0 (z) k rad (z)/ k rad,0 (z)+( k tot (z) k rad (z))/ k rad,0 (z)+(1 QY 0 )/ QY 0
I exc. ( z,θ ) | E E 0 | 2 e z/δ(θ)    .
 δ( θ )= λ o 4 π RI cover 1 ( sin 2 θ sin 2 θ c ) .
Signal Bead 0 max | E E 0 | 2 e z δ( θ )  ρ Bead ( z )QY( z ) k rad,obj k rad  dz
BGR 0 max | E E 0 | 2 e z δ( θ )  ρ BGR  QY( z ) k rad,obj k rad  dz.
BGR=RawSignal.
  f Step ( x )=BGR+ Signal 2 erf( x x 0 w ).

Metrics