Abstract

We propose and demonstrate a novel low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter. The principle of operation of the isolator is based on the superposition of the TE and TM modes. The two different modes become direction-dependent due to a magneto-optical phase shift affecting the TM mode. We designed a tapered mode converter in order to generate the TE and TM modes with equal amplitude when the waveguide is excited with a TE mode input. We successfully demonstrated that the fabricated device acts as an isolator showing a different transmittance between forward and backward directions. The maximum isolation measured is 16 dB at a wavelength of 1561 nm for a TE mode input.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift

Eiichi Ishida, Kengo Miura, Yuya Shoji, Hideki Yokoi, Tetsuya Mizumoto, Nobuhiko Nishiyama, and Shigehisa Arai
Opt. Express 25(1) 452-462 (2017)

Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates

Keyi Shui, Lixia Nie, Yan Zhang, Bo Peng, Jianliang Xie, Longjiang Deng, and Lei Bi
Opt. Express 24(12) 12856-12867 (2016)

Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics

Yan Zhang, Qingyang Du, Chuangtang Wang, Takian Fakhrul, Shuyuan Liu, Longjiang Deng, Duanni Huang, Paolo Pintus, John Bowers, Caroline A. Ross, Juejun Hu, and Lei Bi
Optica 6(4) 473-478 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [Crossref]
  2. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
    [Crossref] [PubMed]
  3. C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express 22(4), 4493–4498 (2014).
    [Crossref] [PubMed]
  4. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  5. X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
    [Crossref]
  6. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
  7. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
    [Crossref] [PubMed]
  8. K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal Operation of Waveguide Optical Isolator Based on Canceling Phase deviations in a Mach-Zehnder Interferometer,” J. Lightwave Technol. 34(8), 1699–1705 (2016).
    [Crossref]
  9. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).
  10. Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403307 (2016).
  11. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
    [Crossref]
  12. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  13. M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
    [Crossref]
  14. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
    [Crossref]
  15. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Application of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
    [Crossref]

2017 (1)

2016 (3)

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal Operation of Waveguide Optical Isolator Based on Canceling Phase deviations in a Mach-Zehnder Interferometer,” J. Lightwave Technol. 34(8), 1699–1705 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403307 (2016).

2015 (1)

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

2014 (2)

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express 22(4), 4493–4498 (2014).
[Crossref] [PubMed]

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

2013 (1)

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

2012 (2)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

2011 (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

2009 (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

2005 (1)

1997 (1)

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

1991 (1)

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Abe, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Aimon, N. M.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Baets, R.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

Bahlmann, N.

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Bowers, J. E.

Chen, L.

Dai, D.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Doerr, C. R.

Dötsch, H.

Du, Q.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Fan, S.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Fujie, A.

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403307 (2016).

Furuya, K.

Furuyama, H.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Gerhardt, R.

Ghosh, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

Gomi, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Goto, T.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Hammer, M.

Hertel, P.

Hu, J.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Huang, D.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kato, K.

Keyvaninia, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

Kim, D. H.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

Mizumoto, T.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal Operation of Waveguide Optical Isolator Based on Canceling Phase deviations in a Mach-Zehnder Interferometer,” J. Lightwave Technol. 34(8), 1699–1705 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403307 (2016).

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

Nemoto, T.

Onbasli, M. C.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Pintus, P.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Popkov, A. F.

Roelkens, G.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

Ross, C.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Shintaku, T.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

Shirato, Y.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

Shoji, Y.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal Operation of Waveguide Optical Isolator Based on Canceling Phase deviations in a Mach-Zehnder Interferometer,” J. Lightwave Technol. 34(8), 1699–1705 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403307 (2016).

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

Sun, X. Y.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Tang, Y.

Tate, A.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

Vermeulen, D.

Wilkens, L.

Yu, Z.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Zhang, C.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Zhuromskyy, O.

ACS Photonics (1)

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Appl. Phys. Lett. (1)

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (2)

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403408 (2016).

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron. 22(6), 4403307 (2016).

IEEE Photonics J. (1)

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Nat. Photonics (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure of the proposed waveguide optical isolator. Ce:YIG is directly bonded on a Si waveguide as an upper cladding layer and magnetized in the film plane by an external magnetic field. Lower shows mode excitation and transition inside the device.
Fig. 2
Fig. 2 (a) Top view of Si waveguide structure of the tapered mode converter. (b)Power distribution of Ex, and Ey for TE0 mode input. In the tapered middle section, multi-mode interference between TE0 and TE1 modes is observed for Ex, while the TE1 mode is gradually converted into TM0 mode via a hybrid mode.
Fig. 3
Fig. 3 Power distribution in case of (a) in-phase interference in the forward direction and (b) out-of-phase interference in the backward direction.
Fig. 4
Fig. 4 Conversion ratio at MMI junction as a function of offset. Offset of zero corresponds to the case that the narrow input waveguide is coaxially connected to the wide MMI section.
Fig. 5
Fig. 5 (a)Dependence of effective indices of Si waveguide with a Ce:YIG cladding layer. (b)The taper length dependence of modal power for TE0 and TM0 modes propagating in the tapered middle section of TE-TM mode converter.
Fig. 6
Fig. 6 Magneto-optical phase shift of TM0 mode calculated at a wavelength of 1550 nm as a function of silicon waveguide width. Two curves correspond to the electromagnetic fields of propagation mode shown by the respective color in Fig. 5(a).
Fig. 7
Fig. 7 Microscopic image of the fabricated isolator. 1500-µm-square Ce:YIG/SGGG die was directly bonded on Si waveguides.
Fig. 8
Fig. 8 Measured transmittance spectra of our fabricated optical isolator. Blue and red lines are the transmittances of the isolator for forward and backward directions, respectively. Orange line is the transmittance of the reference waveguide with a Ce:YIG upper cladding layer.

Tables (1)

Tables Icon

Table 1 Simulated loss breakdown of optical isolator

Metrics