Abstract

Recently, hybrid beams have sparked considerable interest because of their properties coming from different kinds of beams at the same time. Here, we experimentally demonstrate Airy vortex beam generation in the nonlinear frequency conversion process when the fundamental wave with its phase modulated by a spatial light modulator is incident into a homogeneous nonlinear medium. In our experiments, second harmonic Airy circle vortex beams and Airy ellipse vortex beams were generated and the topological charge was also measured. The parabolic trajectory of those Airy vortex beams can be easily adjusted by altering the fundamental wave phase. This study provides a simple way to generate second harmonic Airy vortex beams, which may broaden its future use in optical manipulation and light-sheet microscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear vortex beam array generation by spatially modulated fundamental wave

Hui Li, Haigang Liu, and Xianfeng Chen
Opt. Express 25(23) 28668-28673 (2017)

Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation

Brijesh Kumar Singh, Roei Remez, Yuval Tsur, and Ady Arie
Opt. Lett. 40(22) 5411-5414 (2015)

Measurement of Airy-vortex beam topological charges based on a pixelated micropolarizer array

Yuntian Zhang, Qingchuan Zhang, Xuan Ma, Zhaoxiang Jiang, Tan Xu, Shangquan Wu, and Xiaoping Wu
Appl. Opt. 55(32) 9299-9304 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
    [Crossref]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  4. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
    [Crossref] [PubMed]
  5. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  6. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [Crossref] [PubMed]
  7. Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
    [Crossref]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  9. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  10. F. G. Mitri, “Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α,” Opt. Lett. 36(5), 606–608 (2011).
    [Crossref] [PubMed]
  11. B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
    [Crossref]
  12. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35(23), 4075–4077 (2010).
    [Crossref] [PubMed]
  13. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation properties of an optical vortex carried by an Airy beam: experimental implementation,” Opt. Lett. 36(9), 1617–1619 (2011).
    [Crossref] [PubMed]
  14. J. Zhou, Y. Liu, Y. Ke, H. Luo, and S. Wen, “Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases,” Opt. Lett. 40(13), 3193–3196 (2015).
    [Crossref] [PubMed]
  15. R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
    [Crossref] [PubMed]
  16. B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation,” Opt. Lett. 40(22), 5411–5414 (2015).
    [Crossref] [PubMed]
  17. B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
    [Crossref]
  18. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  19. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  20. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]
  21. X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
    [Crossref] [PubMed]
  22. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [Crossref]
  23. T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
    [Crossref] [PubMed]
  24. Y. Jiang, K. Huang, and X. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express 20(17), 18579–18584 (2012).
    [Crossref] [PubMed]
  25. J. Zhuang, D. Deng, X. Chen, F. Zhao, X. Peng, D. Li, and L. Zhang, “Spatiotemporal sharply autofocused dual-Airy-ring Airy Gaussian vortex wave packets,” Opt. Lett. 43(2), 222–225 (2018).
    [Crossref] [PubMed]
  26. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]
  27. N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
    [Crossref] [PubMed]
  28. V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
    [Crossref] [PubMed]
  29. A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “A highly efficient element for generating elliptic perfect optical vortices,” Appl. Phys. Lett. 110(26), 261102 (2017).
    [Crossref]

2018 (2)

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

J. Zhuang, D. Deng, X. Chen, F. Zhao, X. Peng, D. Li, and L. Zhang, “Spatiotemporal sharply autofocused dual-Airy-ring Airy Gaussian vortex wave packets,” Opt. Lett. 43(2), 222–225 (2018).
[Crossref] [PubMed]

2017 (1)

A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “A highly efficient element for generating elliptic perfect optical vortices,” Appl. Phys. Lett. 110(26), 261102 (2017).
[Crossref]

2016 (2)

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
[Crossref]

2015 (3)

2014 (2)

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

2012 (3)

Y. Jiang, K. Huang, and X. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express 20(17), 18579–18584 (2012).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

2008 (3)

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2006 (1)

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Arie, A.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation,” Opt. Lett. 40(22), 5411–5414 (2015).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Bloch, N. V.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Broky, J.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Chen, P.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Chen, X.

Christodoulides, D. N.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cižmár, T.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Cladé, P.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Coll-Lladó, C.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Dai, H. T.

Dalgarno, H. I.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Deng, D.

Denisenko, V.

Desyatnikov, A. S.

Dholakia, K.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Dogariu, A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Duan, W.

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ferrier, D. E.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Ge, S.

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gunn-Moore, F. J.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Hnatovsky, C.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

Hong, X. H.

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

Hu, W.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, K.

Jiang, Y.

Juwiler, I.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Ke, Y.

Kivshar, Y. S.

Kotlyar, V. V.

A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “A highly efficient element for generating elliptic perfect optical vortices,” Appl. Phys. Lett. 110(26), 261102 (2017).
[Crossref]

Kovalev, A. A.

A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “A highly efficient element for generating elliptic perfect optical vortices,” Appl. Phys. Lett. 110(26), 261102 (2017).
[Crossref]

Krolikowski, W.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
[Crossref] [PubMed]

Lereah, Y.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

Li, D.

Liu, S.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Liu, Y.

Liu, Y. J.

Lu, X.

Lu, Y.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Luo, D.

Luo, H.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Malomed, B. A.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Mitri, F. G.

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Neshev, D. N.

Nylk, J.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Peng, X.

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Porfirev, A. P.

A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “A highly efficient element for generating elliptic perfect optical vortices,” Appl. Phys. Lett. 110(26), 261102 (2017).
[Crossref]

Qi, S.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Qin, Y. Q.

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

Remez, R.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation,” Opt. Lett. 40(22), 5411–5414 (2015).
[Crossref] [PubMed]

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Shapira, A.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Shemer, K.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Shen, Y. C.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
[Crossref]

Shen, Z.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
[Crossref]

Shiloh, R.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Shvedov, V.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
[Crossref] [PubMed]

Singh, B. K.

Siviloglou, G. A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Soskin, M.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Su, L.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
[Crossref]

Sun, X. W.

Tsur, Y.

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation,” Opt. Lett. 40(22), 5411–5414 (2015).
[Crossref] [PubMed]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Vettenburg, T.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Volyar, A.

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wei, B.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wen, S.

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, B.

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yuan, X. C.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zhang, C.

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

Zhang, L.

Zhang, Y.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Zhao, F.

Zhao, J.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Zhou, J.

Zhu, Y. Y.

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

Zhuang, J.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (4)

A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “A highly efficient element for generating elliptic perfect optical vortices,” Appl. Phys. Lett. 110(26), 261102 (2017).
[Crossref]

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
[Crossref]

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

B. Wei, P. Chen, S. Ge, W. Duan, W. Hu, and Y. Lu, “Generation of self-healing and transverse accelerating optical vortices,” Appl. Phys. Lett. 109(12), 121105 (2016).
[Crossref]

Nat. Methods (1)

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, “Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams,” Phys. Rev. Lett. 114(9), 096102 (2015).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Nonlinear volume holography for wave-front engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the experimental setup. Inset (a) shows the FW before the sample. The following denotations are used: HWP, half wave plate; GT prism, Glan-Taylor prism; L1,...,5, lens; focal length L1,…,5 = 50, 100, 200, 30, and 50 mm, respectively; Sample, 5-mol% MgO:LiNbO3; F, filter.
Fig. 2
Fig. 2 Generation of the phase mask. (a) Cubic phase, (b) Spiral phase with topological charge l=3, (c) Airy vortex phase mask.
Fig. 3
Fig. 3 The experiment (a)–(d) and simulation (e)–(h) results of the SH AVBs with topological charge l SH =0,2,6,8, respectively.
Fig. 4
Fig. 4 The measurement of the topological charge by a cylindrical lens with l SH =4,2,0,2,4, respectively.
Fig. 5
Fig. 5 Generation of the phase mask. (a) Cubic phase, (b) a asymmetric spiral phase with topological charge l=3, a=2, (c) Airy ellipse vortex phase mask.
Fig. 6
Fig. 6 The experiment (a)–(f) and simulation (g)–(l) results of the generated SH AVBs with topological charge l SH =8,4,2,2,4,8, respectively.
Fig. 7
Fig. 7 Transverse acceleration of an AVB as a function of distance. The solid line is the analytic solution and circles correspond to the experimental results. The images of SH AVBs at different propagation distance are provided as insets.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 1 = A 1 exp[ i( k 1 zωt ) ]exp[ i( x 3 d 3 + y 3 d 3 )+i l 1 φ ],
d A 2 dz = ε 0 χ ( 2 ) A 1 2 exp[ i( k 2z 2 k 1 )z ]exp[ 2i( x 3 d 3 + y 3 d 3 ) ]exp( 2i l 1 φ ).
A 2 = ε 0 χ ( 2 ) A 1 2 Lexp[ 2i( x 3 d 3 + y 3 d 3 ) ]exp( 2i l 1 φ ).

Metrics