Abstract

A tunable-focus liquid crystal microlens array is demonstrated and characterized. Using two-photon polymerization based direct-laser writing, a polymerized microlens array is fabricated on one substrate. Such a microlens array creates inhomogeneous electric field distribution and homogeneous-like liquid-crystal alignment, simultaneously. The phase profile and thus the focal length can be tuned dynamically by the applied voltage. We also further investigate the focusing property and the imaging capability of the fabricated sample. Using the adaptive microlens array as an example, we demonstrate that directly forming a curvilinear surface with liquid-crystal alignment is feasible. In addition to adaptive lens, this direct-laser writing method is also a powerful tool for making other tunable photonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Switchable Pancharatnam–Berry microlens array with nano-imprinted liquid crystal alignment

Ziqian He, Yun-Han Lee, Ran Chen, Debashis Chanda, and Shin-Tson Wu
Opt. Lett. 43(20) 5062-5065 (2018)

Improvement of performance of liquid crystal microlens with polymer surface modification

Shug-June Hwang, Yi-Xiang Liu, and Glen Andrew Porter
Opt. Express 22(4) 4620-4627 (2014)

Polarization-independent and fast tunable microlens array based on blue phase liquid crystals

Shih-Hung Lin, Lin-Song Huang, Chi-Huang Lin, and Chie-Tong Kuo
Opt. Express 22(1) 925-930 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
    [Crossref] [PubMed]
  2. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref] [PubMed]
  3. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
    [Crossref]
  4. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [Crossref]
  5. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
    [Crossref]
  6. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  7. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [Crossref] [PubMed]
  8. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
    [Crossref] [PubMed]
  9. A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
    [Crossref] [PubMed]
  10. Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
    [Crossref]
  11. P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
    [Crossref] [PubMed]
  12. J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
    [Crossref] [PubMed]
  13. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
    [Crossref] [PubMed]
  14. J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
    [Crossref]
  15. A. Akatay, C. Ataman, and H. Urey, “High-resolution beam steering using microlens arrays,” Opt. Lett. 31(19), 2861–2863 (2006).
    [Crossref] [PubMed]
  16. L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
    [Crossref]
  17. J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [Crossref] [PubMed]
  18. C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Disp. Technol. 8(10), 559–561 (2012).
    [Crossref]
  19. X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
    [Crossref] [PubMed]
  20. M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
    [Crossref]
  21. V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
    [Crossref]
  22. Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
    [Crossref]
  23. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), 571–573 (2002).
    [Crossref]
  24. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
    [Crossref]
  25. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [Crossref] [PubMed]
  26. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
    [Crossref]
  27. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
    [Crossref]
  28. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  29. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  30. Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
    [Crossref] [PubMed]
  31. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
    [Crossref] [PubMed]
  32. Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
    [Crossref]
  33. C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
    [Crossref]

2018 (2)

2017 (4)

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

2016 (1)

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

2015 (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

2013 (2)

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

2010 (3)

2009 (1)

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

2008 (1)

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

2006 (1)

2005 (2)

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

2004 (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

2003 (3)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

2002 (1)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), 571–573 (2002).
[Crossref]

2000 (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[Crossref]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

1998 (1)

1997 (2)

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Akatay, A.

Algorri, J. F.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Asatryan, K.

Ataman, C.

Bagramyan, A.

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Bennis, N.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Bezruchenko, V. S.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Bhowmik, A.

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Bos, P. J.

Cao, Z.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Chanda, D.

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Chao, P. C. P.

Chen, C. W.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Disp. Technol. 8(10), 559–561 (2012).
[Crossref]

Chen, C.-H.

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, P. C.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Disp. Technol. 8(10), 559–561 (2012).
[Crossref]

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Chichkov, B. N.

Chien, L. C.

Chigrinov, V.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Choi, Y.

J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[Crossref] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Chou, P.-Y.

Chu, C.-Y.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[Crossref]

Corral, M. M.

Cronauer, C.

Crozier, K.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[Crossref]

Domann, G.

Duston, D.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Egbert, A.

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Fan, F.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

Franklin, D.

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Fröhlich, L.

Fujii, A.

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

Galstian, T.

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

Gou, F.

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Guralnik, I. R.

He, Z.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Houbertz, R.

Hsieh, P.-Y.

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Hsueh, C. W.

Hu, L.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Hua, H.

Huang, C.-T.

Huang, Y. P.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Disp. Technol. 8(10), 559–561 (2012).
[Crossref]

Huang, Y.-P.

Ito, H.

Jaroszewicz, L. R.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Javidi, B.

Kao, Y. Y.

Kim, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Kim, S.-U.

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kwok, H. S.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Lee, C. Y.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Lee, C.-H.

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Lee, S.-D.

J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[Crossref] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Lee, Y. H.

Lee, Y.-H.

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Li, D.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Li, J.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Liang, X.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, H.-A.

Lin, Y. H.

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Liu, G.

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Liu, Y.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Loktev, M. Yu.

Lu, L.

Lu, X.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Mahilny, U. V.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Masuda, S.

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Miura, Y.

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Morawiak, P.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Mu, Q.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Murauski, A.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Murauski, A. A.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Muravsky, A. A.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Na, J.-H.

Naumov, A. F.

Nose, T.

Orth, A.

Ostendorf, A.

Ozaki, M.

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

Park, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Park, S.-C.

Peng, F.

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Peng, Z.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Popall, M.

Presnyakov, V.

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qin, Y.

Qin, Z.

Ren, H.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Reshetnyak, V.

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Sánchez-Pena, J. M.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Sato, S.

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Schulz, J.

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[Crossref]

Serbin, J.

Sergan, V.

Stankevich, A. I.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Sun, J.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Takahashi, S.

Tork, A.

Tseng, M. C.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Urey, H.

Urruchi, V.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Van Heugten, T.

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Vdovin, G.

Wang, H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Wang, X.

Wang, Y. J.

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Wu, S. T.

Wu, S.-T.

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Xu, S.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Xuan, L.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Ye, M.

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), 571–573 (2002).
[Crossref]

Yoshida, H.

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

Zohrabyan, A.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

C.-H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, “Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing,” Appl. Phys. Lett. 93(17), 173509 (2008).
[Crossref]

J. Appl. Phys. (2)

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

J. Disp. Technol. (2)

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Disp. Technol. 8(10), 559–561 (2012).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), 571–573 (2002).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Liq. Cryst. Rev. (1)

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Nat. Commun. (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Opt. Commun. (2)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[Crossref]

Opt. Express (8)

Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[Crossref] [PubMed]

X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
[Crossref] [PubMed]

Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref] [PubMed]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref] [PubMed]

A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. (1)

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Sci. Rep. (2)

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Y.-H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S.-T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the proposed structure, and (b-d) SEM images of a 16 × 16 microlens array sample where each microlens is 120 × 120 µm2. The series illustrate that the nano-groove directions at different parts, as highlighted by the red arrows, are the same. Scale bars: 10 µm (b), 2 µm (c), and 2 µm (d).
Fig. 2
Fig. 2 Step-by-step fabrication process of a single microlens. After dropping IP-DIP photoresist on the ITO-coated substrate, a laser lithography system is applied to expose the photoresist line-by-line. (a) Line-by-line exposure to form a 500-nm thick uniform groove alignment covering the whole unit. The arrow shows the scanning direction. (b) Finish of the bottom uniform alignment layer. (c) Line-by-line exposure to form the very bottom layer of the microlens. The arrow depicts the scanning direction (d) Finish of the very bottom layer of the microlens. (e) After the exposure of the bottom layer of the microlens, the laser lithography system starts to expose the upper layer of the microlens in a layer-by-layer manner. (f) Finish of the single microlens. After the finish this writing field, the laser system will move to the next writing field and keep scanning until the whole structure is accomplished.
Fig. 3
Fig. 3 Cross-section view of the microlens profiles. The black line denotes the ideal parabolic surface profile and the red line depicts the digitized surface profile.
Fig. 4
Fig. 4 Calculated cross-section of the focal spot for the two cases. The black line denotes the result of the ideal parabolic surface profile and the red line depicts the results of the digitized surface profile. λ = 633 nm.
Fig. 5
Fig. 5 Measured voltage dependent focal length of our fabricated microlens array at three specified wavelengths: R = 633 nm, G = 546 nm, and B = 450 nm.
Fig. 6
Fig. 6 Extracted phase profiles along x and y directions as a function of applied voltage. Inset is the polarized optical microscopy image of a single microlens. The blue and red dashed lines indicate the x and y directions, respectively.
Fig. 7
Fig. 7 The focusing property of the fabricated sample at different wavelengths as a function of applied voltages, which are 0 V for (a), 2.4 V for (b), 3.2 V for (c) and 4 V for (d). The images are captured under the microscope where different color filters are selected to choose the desired wavelength of the incident light. Scale bar: 20 µm for all.
Fig. 8
Fig. 8 White-light imaging capability for different targets as a function of applied voltage. From top to bottom: ‘UCF’ letters, four-dot target and three-bar target. Scale bar: 20 µm for all.

Metrics