Abstract

Arbitrary shaping of optical waveform is fundamental interest from basic science to advanced optical technologies. However, it is still challenging task for shaping a biphoton wave packet. Here we experimentally manipulate the spectrum and phase of a biphoton wave packet in a two-dimensional frequency space. The spectrum is shaped by adjusting the temperature of the crystal, and the phase is controlled by tilting the dispersive glass plate. The manipulating effects are confirmed by measuring the two-photon spectral intensity (TSI) and the Hong-Ou-Mandel (HOM) interference patterns. The technique in this work paves the way for arbitrary shaping of a multi-photon wave packet in a quantum manner.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient generation and characterization of spectrally factorable biphotons

Changchen Chen, Cao Bo, Murphy Yuezhen Niu, Feihu Xu, Zheshen Zhang, Jeffrey H. Shapiro, and Franco N. C. Wong
Opt. Express 25(7) 7300-7312 (2017)

Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition

Nandan S. Bisht and Ryosuke Shimizu
J. Opt. Soc. Am. B 32(4) 550-554 (2015)

Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping

Hsuan-Hao Lu, Ogaga D. Odele, Daniel E. Leaird, and Andrew M. Weiner
Opt. Lett. 43(4) 743-746 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Shih, An introduction to quantum optics: photon and biphoton physics (CRC Press, 2011).
  2. R.-B. Jin, T. Saito, and R. Shimizu, “Experimental demonstration of time-frequency duality of biphotons,” arXiv:180109044 (2018).
  3. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
    [Crossref] [PubMed]
  4. J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
    [Crossref] [PubMed]
  5. L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
    [Crossref] [PubMed]
  6. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
    [Crossref] [PubMed]
  7. V. Torres-Company, A. Valencia, and J. P. Torres, “Tailoring the spectral coherence of heralded single photons,” Opt. Lett. 34, 1177–1179 (2009).
    [Crossref] [PubMed]
  8. N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
    [Crossref] [PubMed]
  9. W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
    [Crossref]
  10. V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
    [Crossref] [PubMed]
  11. A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
    [Crossref]
  12. S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
    [Crossref]
  13. N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
    [Crossref] [PubMed]
  14. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
    [Crossref]
  15. C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
    [Crossref]
  16. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  17. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
    [Crossref] [PubMed]
  18. A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
    [Crossref] [PubMed]
  19. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
    [Crossref]
  20. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
    [Crossref] [PubMed]
  21. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
    [Crossref] [PubMed]
  22. N. S. Bisht and R. Shimizu, “Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition,” J. Opt. Soc. Am. B 32, 550–554 (2015).
    [Crossref]
  23. R.-B. Jin and R. Shimizu, “Extended Wiener-Khinchin theorem for quantum spectral analysis,” Optica 5, 93–98 (2018).
    [Crossref]
  24. A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
    [Crossref]
  25. Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
    [Crossref] [PubMed]
  26. M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
    [Crossref]
  27. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014).
    [Crossref] [PubMed]
  28. R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
    [Crossref]
  29. R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
    [Crossref]
  30. C. Greganti, P. Schiansky, I. A. Calafell, L. M. Procopio, L. A. Rozema, and P. Walther, “Tuning single-photon sources for telecom multi-photon experiments,” Opt. Express 26, 3286–3302 (2018).
    [Crossref] [PubMed]

2018 (4)

2017 (3)

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
[Crossref] [PubMed]

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

2016 (3)

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref] [PubMed]

W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
[Crossref]

R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
[Crossref]

2015 (3)

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

N. S. Bisht and R. Shimizu, “Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition,” J. Opt. Soc. Am. B 32, 550–554 (2015).
[Crossref]

2014 (3)

2013 (2)

2012 (1)

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

2011 (1)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

2010 (1)

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

2009 (3)

2007 (1)

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

2005 (1)

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

2004 (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Ansari, V.

Aspelmeyer, M.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Barbieri, M.

Benichi, H.

Bernhard, C.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Bessire, B.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Bisht, N. S.

Bruno, N.

Büse, A.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Calafell, I. A.

Cere, A.

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Chan, H.-S.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Chen, G.-Q.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Chen, J. F.

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

Chinnarasu, R.

W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
[Crossref]

Cho, Y.-W.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Chuu, C.-S.

W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
[Crossref]

Dayan, B.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Deng, P.

R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
[Crossref]

Donohue, J. M.

Doostdar, M.

Du, S.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

Edamatsu, K.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
[Crossref] [PubMed]

Eigner, C.

Fedrizzi, A.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Feurer, T.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Friesem, A. A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Fujiwara, M.

Ghosh, J.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Gianani, I.

Goldschmidt, E. A.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Greganti, C.

Guerreiro, T.

Guo, G.-C.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Guo, X.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Hafezi, M.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Helt, L. G.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Herbst, T.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Hsieh, Z.-M.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Jennewein, T.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Jin, R.-B.

R.-B. Jin and R. Shimizu, “Extended Wiener-Khinchin theorem for quantum spectral analysis,” Optica 5, 93–98 (2018).
[Crossref]

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref] [PubMed]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref] [PubMed]

R.-B. Jin, T. Saito, and R. Shimizu, “Experimental demonstration of time-frequency duality of biphotons,” arXiv:180109044 (2018).

Jing, H.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Juan, M. L.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Kalashnikov, D. A.

A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
[Crossref] [PubMed]

Kim, Y.-H.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

Kosaka, H.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

Krivitsky, L. A.

A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
[Crossref] [PubMed]

Kung, A. H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Kuo, C.-H.

W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
[Crossref]

Lai, C.-J.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Lee, C.-K.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Li, Y.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Li, Y.-H.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Liang, W.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Liu, S.-K.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Liu, S.-L.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Loy, M. M. T.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

Lu, P.-X.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Lung, S.

A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
[Crossref] [PubMed]

Mancino, L.

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Martin, A.

Matsuda, N.

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref] [PubMed]

Miki, S.

Mitsumori, Y.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

Mittal, S.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Molina-Terriza, G.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Orre, V. V.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Padberg, L.

Pan, R.-P.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Park, K.-K.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Paterova, A.

A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
[Crossref] [PubMed]

Pe’er, A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Peng, L.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Piro, N.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Procopio, L. M.

Ren, C.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Restelli, A.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Roccia, E.

Rozema, L. A.

Saito, T.

R.-B. Jin, T. Saito, and R. Shimizu, “Experimental demonstration of time-frequency duality of biphotons,” arXiv:180109044 (2018).

Salem, R.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Sanguinetti, B.

Santandrea, M.

Sasaki, M.

Sbroscia, M.

Schiansky, P.

Shi, B.-S.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Shi, X.

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Shih, Y.

Y. Shih, An introduction to quantum optics: photon and biphoton physics (CRC Press, 2011).

Shimizu, R.

Silberberg, Y.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Silberhorn, C.

Steel, M. J.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Stefanov, A.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Su, W.-M.

W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
[Crossref]

Su, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Sun, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Terai, H.

Thew, R. T.

Tischler, N.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

Torres, J. P.

V. Torres-Company, A. Valencia, and J. P. Torres, “Tailoring the spectral coherence of heralded single photons,” Opt. Lett. 34, 1177–1179 (2009).
[Crossref] [PubMed]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Torres-Company, V.

Valencia, A.

V. Torres-Company, A. Valencia, and J. P. Torres, “Tailoring the spectral coherence of heralded single photons,” Opt. Lett. 34, 1177–1179 (2009).
[Crossref] [PubMed]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Wakui, K.

Walther, P.

Wang, Z.

Wong, F. N. C.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

Wong, G. K. L.

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

Wu, Q.-L.

R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
[Crossref]

Xu, Z.-H.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Yabuno, M.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

Yamashita, T.

Yan, H.

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

Yang, C.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Zeilinger, A.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Zhang, S.

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

Zhao, L.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Zhao, P.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
[Crossref]

Zhou, Z.-Y.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (5)

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

W.-M. Su, R. Chinnarasu, C.-H. Kuo, and C.-S. Chuu, “Shaping single photons and biphotons by inherent losses,” Phys. Rev. A 94, 033805 (2016).
[Crossref]

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Phys. Rev. Appl. (1)

R.-B. Jin, P. Zhao, P. Deng, and Q.-L. Wu, “Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M=K, Rb, Cs; X=P, As) crystals,” Phys. Rev. Appl. 6, 064017 (2016).
[Crossref]

Phys. Rev. Lett. (8)

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the behavior of photons in a birefringent interferometer,” Phys. Rev. Lett. 120, 263601 (2018).
[Crossref] [PubMed]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref] [PubMed]

J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Sci. Adv. (1)

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Paterova, S. Lung, D. A. Kalashnikov, and L. A. Krivitsky, “Nonlinear infrared spectroscopy free from spectral selection,” Sci. Rep. 7, 42608 (2017).
[Crossref] [PubMed]

Science (1)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165 (2011).
[Crossref] [PubMed]

Other (2)

Y. Shih, An introduction to quantum optics: photon and biphoton physics (CRC Press, 2011).

R.-B. Jin, T. Saito, and R. Shimizu, “Experimental demonstration of time-frequency duality of biphotons,” arXiv:180109044 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of creation of a discrete-frequency entangled biphoton in bidirectional pump. NLC, nonlinear crystal; DWP, dual-wavelength wave plate; M, mirror; D, dispersive medium.
Fig. 2
Fig. 2 Experimental setup for (a) biphoton source, (b) TSI measurement, (c) HOM measurement. PPKTP has a length of 30 mm and a polling period of 46.2 μm. DWP, dual-wavelength wave plate; SMF, single-mode fiber; APD, avalanche photodiode; PBS, polarizing beam splitter; HWP, half-wave plate; TBPF, tunable bandpass filter; TIA, time interval analyzer.
Fig. 3
Fig. 3 Observed two-photon spectral intensities with normalization (upper) and their HOM interference patterns (lower). The plots on the left (right) show the data at the PPKTP temperature of 65 °C (80 °C). Error bars are equal to the square root of each data point by assuming Poissonian counting statistics. The solid line is the fitting of the experimental data.
Fig. 4
Fig. 4 Demonstration of the controllability of the relative phase between the two spectral modes s(ω1, ω2) and s(ω2, ω1). (a) Normalized two-photon spectral intensity (TSI) at 45 °C for PPKTP. (b)–(e) Corresponding HOM interference patterns at different relative phases. Error bars assume Poissonian counting statistics. The solid line is the fitting of the experimental data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( ω 1 , ω 2 ) = s ( ω 1 , ω 2 ) + e i ϕ s ( ω 2 , ω 1 ) .
P ( τ ) = 1 4 d ω 1 d ω 2 | S ( ω 1 , ω 2 ) S ( ω 2 , ω 1 ) e i ( ω 1 ω 2 ) τ | 2 .
P ( τ ) = 1 4 d ω 1 d ω 2 | S ( ω 1 , ω 2 ) S * ( ω 1 , ω 2 ) e i [ ( ω 1 ω 2 ) τ ϕ ] | 2 .

Metrics