Abstract

Conventional photon sieves suffer from large chromatic aberration due to diffractive nature and can image only at a single designed wavelength with near zero bandwidth. Here, a novel photon sieve that can image achromatically and simultaneously at multiple wavelengths with wide spectral bandwidth is proposed and demonstrated experimentally. The multispectral achromatic imaging with a single diffractive photon sieve is implemented with harmonic diffraction and wavefront coding, in which harmonic diffraction makes different diffracted orders of multiple harmonic wavelengths on a common focus while wavefront coding through the coded distribution of the pinholes expands the bandwidth of diffracted imaging. Numerical simulations show that when four spectral bands centered at 437.5, 500, 583.3, and 700 nm in the visible range is designed with a cubic wavefront coding parameter α = 30π and a harmonic diffraction order of 5, the bandwidth at the corresponding wavelength band can reach ± 8, ± 9, ± 11 and ± 14 nm respectively, and the total working bandwidth of the harmonic diffraction wavefront coded photon sieve reaches ~84 nm compared with 0.39 nm of the conventional one. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieve of a focal length of 500 mm and a diameter of 50 mm at a designed wavelength of 700 nm. The results show excellent agreement with the theoretical predictions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband photon sieves imaging with wavefront coding

Xiaonan Zhao, Feng Xu, Jingpei Hu, and Chinhua Wang
Opt. Express 23(13) 16812-16822 (2015)

Ultra-large multi-region photon sieves

Zhifeng Chen, Chinhua Wang, Donglin Pu, Jin Hu, and Linsen Chen
Opt. Express 18(15) 16279-16288 (2010)

Analytical Fresnel imaging models for photon sieves

Figen S. Oktem, Farzad Kamalabadi, and Joseph M. Davila
Opt. Express 26(24) 32259-32279 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Wang and X. C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82(12), 1821–1823 (2003).
    [Crossref]
  2. Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
    [Crossref]
  3. Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y. Hwu, V. Gajdosik, and G. Margaritondo, “Hard x-ray Zernike microscopy reaches 30 nm resolution,” Opt. Lett. 36(7), 1269–1271 (2011).
    [Crossref] [PubMed]
  4. R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
    [Crossref] [PubMed]
  5. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
    [Crossref] [PubMed]
  6. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19(12), 2387–2393 (2002).
    [Crossref] [PubMed]
  7. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).
    [Crossref] [PubMed]
  8. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
    [Crossref] [PubMed]
  9. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005).
    [Crossref] [PubMed]
  10. Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
    [Crossref]
  11. Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
    [Crossref] [PubMed]
  12. A. Sabatyan and P. Roshaninejad, “Super-resolving random-Gaussian apodized photon sieve,” Appl. Opt. 51(26), 6315–6318 (2012).
    [Crossref] [PubMed]
  13. A. Sabatyan and S. A. Hoseini, “Diffractive performance of a photon-sieve-based axilens,” Appl. Opt. 53(31), 7331–7336 (2014).
    [Crossref] [PubMed]
  14. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
    [Crossref] [PubMed]
  15. H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
    [Crossref]
  16. C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48(8), 1619–1623 (2009).
    [Crossref] [PubMed]
  17. X. Zhao, F. Xu, J. Hu, and C. Wang, “Broadband photon sieves imaging with wavefront coding,” Opt. Express 23(13), 16812–16822 (2015).
    [Crossref] [PubMed]
  18. X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
    [Crossref] [PubMed]
  19. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34(14), 2462–2468 (1995).
    [Crossref] [PubMed]
  20. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34(14), 2469–2475 (1995).
    [Crossref] [PubMed]
  21. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [Crossref] [PubMed]
  22. H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37(23), 5359–5367 (1998).
    [Crossref] [PubMed]
  23. N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008).
    [Crossref] [PubMed]
  24. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
    [Crossref] [PubMed]

2016 (1)

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2008 (4)

H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
[Crossref]

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (2)

2003 (2)

S. Wang and X. C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82(12), 1821–1823 (2003).
[Crossref]

Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (1)

1995 (3)

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Andersen, G.

Barbastathis, G.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Bradman, N. M.

H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
[Crossref]

Cao, Q.

Caron, N.

Cathey, W. T.

Chen, L.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
[Crossref] [PubMed]

Chen, T. Y.

Chen, Y. T.

Chen, Z.

Chien, C. C.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Chu, Y. S.

Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y. Hwu, V. Gajdosik, and G. Margaritondo, “Hard x-ray Zernike microscopy reaches 30 nm resolution,” Opt. Lett. 36(7), 1269–1271 (2011).
[Crossref] [PubMed]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Chung, H. H.

H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
[Crossref]

Davidson, M. R.

H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
[Crossref]

De Carlo, F.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Dong, X.

Dowski, E. R.

Du, C.

Du, C. L.

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Faklis, D.

Feser, M.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Fu, Y. Q.

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Gajdosik, V.

Gao, Z.

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Gil, D.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Holloway, P. H.

H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
[Crossref]

Hoseini, S. A.

Hu, J.

Hwu, Y.

Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y. Hwu, V. Gajdosik, and G. Margaritondo, “Hard x-ray Zernike microscopy reaches 30 nm resolution,” Opt. Lett. 36(7), 1269–1271 (2011).
[Crossref] [PubMed]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Hyde, R. A.

Jahns, J.

Je, J. H.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Kempson, I. M.

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Lee, W. K.

Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y. Hwu, V. Gajdosik, and G. Margaritondo, “Hard x-ray Zernike microscopy reaches 30 nm resolution,” Opt. Lett. 36(7), 1269–1271 (2011).
[Crossref] [PubMed]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Liang, K. S.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Lin, Y.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

Liu, C. J.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Luo, X. G.

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Ma, J. X.

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Margaritondo, G.

Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y. Hwu, V. Gajdosik, and G. Margaritondo, “Hard x-ray Zernike microscopy reaches 30 nm resolution,” Opt. Lett. 36(7), 1269–1271 (2011).
[Crossref] [PubMed]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Menon, R.

Morris, G. M.

Pu, D.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
[Crossref] [PubMed]

Roshaninejad, P.

Sabatyan, A.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Shen, Q.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Sheng, Y.

Shi, L.

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Smith, H. I.

Sommargren, G. E.

Sweeney, D. W.

Tkachuk, A.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Tullson, D.

Wach, H. B.

Wang, C.

Wang, C. H.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Wang, C. L.

Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y. Hwu, V. Gajdosik, and G. Margaritondo, “Hard x-ray Zernike microscopy reaches 30 nm resolution,” Opt. Lett. 36(7), 1269–1271 (2011).
[Crossref] [PubMed]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Wang, J. Y.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Wang, S.

S. Wang and X. C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82(12), 1821–1823 (2003).
[Crossref]

Wu, H. J.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Wu, S. R.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Xu, F.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

X. Zhao, F. Xu, J. Hu, and C. Wang, “Broadband photon sieves imaging with wavefront coding,” Opt. Express 23(13), 16812–16822 (2015).
[Crossref] [PubMed]

Yang, C. S.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Yi, J.

Yi, J. M.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Yun, W.

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

Zhang, X. C.

S. Wang and X. C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82(12), 1821–1823 (2003).
[Crossref]

Zhao, X.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

X. Zhao, F. Xu, J. Hu, and C. Wang, “Broadband photon sieves imaging with wavefront coding,” Opt. Express 23(13), 16812–16822 (2015).
[Crossref] [PubMed]

Zhou, C.

Zhu, X.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

Appl. Opt. (11)

H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37(23), 5359–5367 (1998).
[Crossref] [PubMed]

R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
[Crossref] [PubMed]

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
[Crossref] [PubMed]

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34(14), 2462–2468 (1995).
[Crossref] [PubMed]

D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34(14), 2469–2475 (1995).
[Crossref] [PubMed]

G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
[Crossref] [PubMed]

G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
[Crossref] [PubMed]

N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008).
[Crossref] [PubMed]

C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48(8), 1619–1623 (2009).
[Crossref] [PubMed]

A. Sabatyan and P. Roshaninejad, “Super-resolving random-Gaussian apodized photon sieve,” Appl. Opt. 51(26), 6315–6318 (2012).
[Crossref] [PubMed]

A. Sabatyan and S. A. Hoseini, “Diffractive performance of a photon-sieve-based axilens,” Appl. Opt. 53(31), 7331–7336 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. Wang and X. C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82(12), 1821–1823 (2003).
[Crossref]

Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, “Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,” Appl. Phys. Lett. 92(10), 103119 (2008).
[Crossref]

J. Opt. Soc. Am. A (3)

Nature (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Opt. Eng. (1)

H. H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. 47(11), 118001 (2008).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Z. Gao, X. G. Luo, J. X. Ma, Y. Q. Fu, and C. L. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[Crossref]

Opt. Lett. (2)

Sci. Rep. (1)

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The schematics of a CPS, HDPS, and HDWFCPS with an aperture of 50 mm, focal length of 500 mm. (a) CPS with design wavelength λ0 = 700 nm; (b) HDPS with P = 5 and λ0 = 700 nm; (c) HDWFCPS with P = 5, λ0 = 700 nm and α = 30π. For clarity, only the innermost 30 rings in CPS and 6 rings in HDPS and HDWFCPS are shown.
Fig. 2
Fig. 2 Simulated PSFs and images of the CPS and HDPS at different harmonic wavelengths. (a) PSFs of the CPS; (b) PSFs of the HDPS; (c) images of the CPS; and (d) images of the HDPS.
Fig. 3
Fig. 3 (a) MTFs of the CPS and HDPS at harmonic wavelengths; (b) Diffractive intensity distribution of the HDPS near focal plane along optical axis (Z) at different harmonic wavelengths.
Fig. 4
Fig. 4 Simulated PSFs and images of the HDPS at different wavelengths within a certain bandwidth in each harmonic waveband. (a) PSFs of the HDPS; (b) images of the HDPS.
Fig. 5
Fig. 5 The simulated imaging behaviors of a HDWFCPS at different harmonic wavelength bands with a coding parameter α = 30π. (1a, 2a, 3a, 4a): PSFs; (1b, 2b, 3b, 4b): intermediate blurred images; (1c, 2c, 3c, 4c): restored clear images.
Fig. 6
Fig. 6 MTFs of the HDPS and HDWFCPS within bandwidth of different harmonic wavelengths.
Fig. 7
Fig. 7 (a) Experimental setup of a HDWFCPS imaging system; (b) Transmissions of four bandpass filters with a FWHM bandwidth of 10 nm and centered at wavelength 440 nm, 500 nm, 580nm, and 690 nm, respectively.
Fig. 8
Fig. 8 The blurred images of the CPS and HDPS at four designed harmonic wavebands with a bandwidth of 10 nm. (a) CPS; and (b) HDPS.
Fig. 9
Fig. 9 (a) Measured PSF of the HDWFCPS with a coding parameter α = 30π; (b) Intermediate blurred image produced by the HDWFCPS; (c) Restored image of the HDWFCPS.
Fig. 10
Fig. 10 (a) MTFs of HDWFCPS at the four wavebands before restoration; (b) MTFs of HDWFCPS at the four wavebands after restoration.
Fig. 11
Fig. 11 Images of the HDWFCPS under the illumination of four-waveband mixed light source. (a) Experimental arrangement; (b) Intermediate blurred image; (c) Restored image.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( x m 2 + y m 2 ) + f 2 f = n P λ 0 , n = 1 , 2 , 3...
( x m 2 + y m 2 ) + f 2 f = n P λ 0 + α k R 3 ( x m 3 + y m 3 ) , n = 1 , 2 , 3...

Metrics