Abstract

We propose a perspective type of insulator-metal-insulator magnetoplasmonic crystal waveguide, composed of a gold grating placed between two garnet layers. Using an original non-perturbing method for the deposition of the upper magneto-dielectric layer, we fabricate the samples and provide experimental results evidencing the coupling of surface plasmon-polaritons propagating on the opposite Au/garnet interfaces. In contrast to traditional Au/garnet magnetoplasmonic crystals, spectra of the magneto-optical effect measured in transmission through this waveguide demonstrate rather specific features: a high-quality resonance for the long-range surface plasmon-polariton and a broad 60 nm wide resonance for the short-range surface plasmon-polariton. Our findings open new routes towards the development of high-sensitivity robust magnetoplasmonic sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide tunability of magnetoplasmonic crystals due to excitation of multiple waveguide and plasmon modes

A. L. Chekhov, V. L. Krutyanskiy, A. N. Shaimanov, A. I. Stognij, and T. V. Murzina
Opt. Express 22(15) 17762-17768 (2014)

High-quality Au/BIG/GGG magnetoplasmonic crystals fabricated by a combined ion-beam etching technique

A. L. Chekhov, V. L. Krutyanskiy, V. A. Ketsko, A. I. Stognij, and T. V. Murzina
Opt. Mater. Express 5(7) 1647-1652 (2015)

Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response

Andrey N. Kalish, Roman S. Komarov, Mikhail A. Kozhaev, Venu Gopal Achanta, Sarkis A. Dagesyan, Alexander N. Shaposhnikov, Anatoly R. Prokopov, Vladimir N. Berzhansky, Anatoly K. Zvezdin, and Vladimir I. Belotelov
Optica 5(5) 617-623 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
    [Crossref]
  2. S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
    [Crossref] [PubMed]
  3. G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
    [Crossref]
  4. A.V. Baryshev, H. Uchida, and M. Inoue, “Peculiarities of plasmon-modified magneto-optical response of gold-garnet structures,” J. Opt. Soc. Am. B 30, 2371–2376 (2013).
    [Crossref]
  5. I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
    [Crossref]
  6. G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
    [Crossref]
  7. V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
    [Crossref]
  8. V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
    [Crossref] [PubMed]
  9. D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
    [Crossref]
  10. J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
    [Crossref]
  11. A.L. Chekhov, V.L. Krutyanskiy, A.N. Shaimanov, A.I. Stognij, and T.V. Murzina, “Wide tunability of magneto-plasmonic crystals due to excitation of multiple waveguide and plasmon modes,” Opt. Express 22, 17762–17768 (2014).
    [Crossref] [PubMed]
  12. I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
    [Crossref]
  13. O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
    [Crossref]
  14. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
    [Crossref]
  15. A. Zvezdin and V.A. Kotov, Modern magnetooptics and magnetooptical materials (CRC, 1997).
    [Crossref]
  16. A.E. Craig, G.A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
    [Crossref] [PubMed]
  17. B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Light. Technol. 24, 945–955 (2006).
    [Crossref]
  18. Y.-C. Lan and C.-M. Chen, “Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration,” Opt. Express 18, 12470–12481 (2010).
    [Crossref] [PubMed]
  19. G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
    [Crossref]
  20. M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration,” Optik - Int. J. for Light. Electron Opt. 124, 276–281 (2013).
    [Crossref]
  21. N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
    [Crossref]
  22. T. Tepper and C. Ross, “Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films,” J. Cryst. Growth 255, 324–331 (2003).
    [Crossref]
  23. V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
    [Crossref]
  24. P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]

2018 (1)

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

2017 (1)

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

2016 (1)

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

2015 (2)

I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
[Crossref]

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

2014 (1)

2013 (3)

A.V. Baryshev, H. Uchida, and M. Inoue, “Peculiarities of plasmon-modified magneto-optical response of gold-garnet structures,” J. Opt. Soc. Am. B 30, 2371–2376 (2013).
[Crossref]

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration,” Optik - Int. J. for Light. Electron Opt. 124, 276–281 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

2012 (1)

G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
[Crossref]

2011 (1)

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

2010 (2)

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Y.-C. Lan and C.-M. Chen, “Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration,” Opt. Express 18, 12470–12481 (2010).
[Crossref] [PubMed]

2009 (1)

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

2008 (1)

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

2006 (2)

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Light. Technol. 24, 945–955 (2006).
[Crossref]

2003 (1)

T. Tepper and C. Ross, “Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films,” J. Cryst. Growth 255, 324–331 (2003).
[Crossref]

2000 (1)

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

1984 (1)

V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
[Crossref]

1983 (2)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
[Crossref]

A.E. Craig, G.A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
[Crossref] [PubMed]

1972 (1)

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adachi, N.

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

Akimov, I.A.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Light. Technol. 24, 945–955 (2006).
[Crossref]

Atkinson, R.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Babu, A.

G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
[Crossref]

Baryshev, A.V.

I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
[Crossref]

A.V. Baryshev, H. Uchida, and M. Inoue, “Peculiarities of plasmon-modified magneto-optical response of gold-garnet structures,” J. Opt. Soc. Am. B 30, 2371–2376 (2013).
[Crossref]

Belotelov, V.I.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Bhagyaraj, C.

G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
[Crossref]

Bi, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Borovkova, O.V.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Chakravarty, A.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Chekhov, A.L.

Chen, C.-M.

Christy, R.W.

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Craig, A.E.

Dagesyan, S.A.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Deng, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Denysenkov, V.P.

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

Dietler, G.

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

Doormann, V.

V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
[Crossref]

Erman, M.

V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
[Crossref]

Ferreiro-Vila, E.

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Fujii, M.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Garcia-Martin, A.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Garcia-Martin, J.M.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

García-Martín, J.M.

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

González, M.U.

G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

González-Díaz, J.B.

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Gopal, A.V.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Granpayeh, N.

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration,” Optik - Int. J. for Light. Electron Opt. 124, 276–281 (2013).
[Crossref]

Grishin, A.M.

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

Guyader, L.L.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Guzatov, D.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Hashim, H.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Hayashi, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Hendren, W.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Hu, J.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Ignatyeva, D.O.

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

Inoue, M.

Iwata, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Johnson, P.B.

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kang, T.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Kapralov, P.O.

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

Kasture, S.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Kato, T.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Khartsev, S.I.

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

Khatir, M.

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration,” Optik - Int. J. for Light. Electron Opt. 124, 276–281 (2013).
[Crossref]

Kirilyuk, A.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Klages, C.P.

V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
[Crossref]

Knyazev, G.A.

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

Kolmychek, I.A.

I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
[Crossref]

Kotov, V.A.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

A. Zvezdin and V.A. Kotov, Modern magnetooptics and magnetooptical materials (CRC, 1997).
[Crossref]

Kozhaev, M.A.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Krumme, J.P.

V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
[Crossref]

Krutyanskiy, V.L.

Lan, Y.-C.

Lechuga, L.

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Light. Technol. 24, 945–955 (2006).
[Crossref]

Leitenstorfer, A.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Levy, M.

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Liang, X.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Liu, C.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Lu, H.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Mathew, G.

G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
[Crossref]

Mathew, V.

G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
[Crossref]

Maziewski, A.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

Murzina, T.V.

I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
[Crossref]

A.L. Chekhov, V.L. Krutyanskiy, A.N. Shaimanov, A.I. Stognij, and T.V. Murzina, “Wide tunability of magneto-plasmonic crystals due to excitation of multiple waveguide and plasmon modes,” Opt. Express 22, 17762–17768 (2014).
[Crossref] [PubMed]

Okuda, T.

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

Olson, G.A.

Parchenko, S.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

Peng, B.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Pohl, M.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Pollard, R.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Qin, J.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Rasing, T.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Razdolski, I.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

Ross, C.

T. Tepper and C. Ross, “Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films,” J. Cryst. Growth 255, 324–331 (2003).
[Crossref]

Sarid, D.

Sekatskii, S.K.

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

Semin, S.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

Sepulveda, B.

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Light. Technol. 24, 945–955 (2006).
[Crossref]

Shaimanov, A.N.

I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
[Crossref]

A.L. Chekhov, V.L. Krutyanskiy, A.N. Shaimanov, A.I. Stognij, and T.V. Murzina, “Wide tunability of magneto-plasmonic crystals due to excitation of multiple waveguide and plasmon modes,” Opt. Express 22, 17762–17768 (2014).
[Crossref] [PubMed]

Smolyaninov, I.I.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Stognij, A.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

Stognij, A.I.

Stupakiewicz, A.

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
[Crossref]

Temnov, V.V.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Tepper, T.

T. Tepper and C. Ross, “Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films,” J. Cryst. Growth 255, 324–331 (2003).
[Crossref]

Thomay, T.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Tomita, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Torrado, J.F.

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Tsunashima, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Uchida, H.

Vengurlekar, A.S.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Wang, C.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Wang, X.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Woggon, U.

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Wurtz, G.A.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Yakovlev, D.R.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Zayats, A.V.

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Zhang, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Zhang, Y.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Zhou, P.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Zvezdin, A.

A. Zvezdin and V.A. Kotov, Modern magnetooptics and magnetooptical materials (CRC, 1997).
[Crossref]

Zvezdin, A.K.

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

ACS Photonics (2)

I. Razdolski, S. Parchenko, A. Stupakiewicz, S. Semin, A. Stognij, A. Maziewski, A. Kirilyuk, and T. Rasing, “Second-harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances,” ACS Photonics 2, 20–26 (2015).
[Crossref]

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal–insulator–metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photonics 4, 1403–1412 (2017).
[Crossref]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M.U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

Appl. Phys. A (1)

V. Doormann, J.P. Krumme, C.P. Klages, and M. Erman, “Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths,” Appl. Phys. A 34, 223–230 (1984).
[Crossref]

Appl. Phys. Lett. (1)

O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, and V.I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

J. Appl. Phys. (1)

N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys. 88, 2734–2739 (2000).
[Crossref]

J. Cryst. Growth (1)

T. Tepper and C. Ross, “Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films,” J. Cryst. Growth 255, 324–331 (2003).
[Crossref]

J. Light. Technol. (2)

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Light. Technol. 24, 945–955 (2006).
[Crossref]

G. Mathew, C. Bhagyaraj, A. Babu, and V. Mathew, “Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width,” J. Light. Technol. 30, 273–278 (2012).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. González, J.B. González-Díaz, E. Ferreiro-Vila, and J.F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. E: Sci. Instruments (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
[Crossref]

JETP Lett. (1)

I.A. Kolmychek, A.N. Shaimanov, A.V. Baryshev, and T.V. Murzina, “Magneto-optical response of two-dimensional magnetic plasmon structures based on gold nanodisks embedded in a ferrite garnet layer,” JETP Lett. 102, 46–50 (2015).
[Crossref]

Nat. Nanotechnol. (1)

V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, and A.K. Zvezdin, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, and A. Leitenstorfer, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

New J. Phys. (1)

G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, T. Rasing, I.I. Smolyaninov, and A.V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik - Int. J. for Light. Electron Opt. (1)

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration,” Optik - Int. J. for Light. Electron Opt. 124, 276–281 (2013).
[Crossref]

Phys. Rev. B (1)

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[Crossref] [PubMed]

Sci. Reports (1)

D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, and V.I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Reports 6, 28077 (2016).
[Crossref]

Other (1)

A. Zvezdin and V.A. Kotov, Modern magnetooptics and magnetooptical materials (CRC, 1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Magnetoplasmonic crystal (MPC). (b) Magnetoplasmonic crystal waveguide (MPCW). Blue and red colors show the Hy component distribution for symmetric and antisymmetric bound modes, correspondingly.
Fig. 2
Fig. 2 SEM images of the gold grating on top of the BiLuIG layer before (a) and after (b) BiIG deposition. (c) SEM image of the MPCW cross-section. The platinum layer was deposited for the cross-section measurements. (d) Normal-incidence transmission spectra for the BiLuIG (black curve) and BiIG (green curve) films. Red curve is the analytical fit [14]. Transverse Kerr effect hysteresis loops for BiLuIG (e) and BiIG (f) films.
Fig. 3
Fig. 3 Transmission (a) and magnetic contrast (b) of an MPC versus wavelength and incidence angle. Solid curves correspond to calculated regions for Au/BIG (solid curves) and Au/air (dashed curves) SPP excitation. Transmission (c) and magnetic contrast (d) of a MPCW versus wavelength and incidence angle. Solid curves indicate calculated regions for long-range (blue curves) and short-range (red curves) SPP excitation.
Fig. 4
Fig. 4 Transmission (a) and magnetic contrast (b) spectra for MPC (black curves) and MPCW (green curves) for 16° angle of incidence. Vertical dashed lines are guide to the eye.
Fig. 5
Fig. 5 (a) The MPCW model with Hy distributions of symmetric (blue) and antisymmetric (red) modes calculated for 1.55 eV photon energy (800 nm wavelength). (b) Dispersion curves for a single-interface Au/BiLuIG SPP (black curve), for symmetric (blue curve) and antisymmetric (red curve) modes supported by a 50 nm Au film. Dashed line shows the light dispersion in BiLuIG. (c) Propagation length for symmetric (blue curve) and antisymmetric (red curve) bound modes versus the gold film thickness for 1.55 eV photon energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 3 th ( γ 3 h d ) + β 4 β 4 th ( γ 3 h d ) + β 3 = β 2 β 3 β 2 th ( γ 2 h m ) + β 1 β 1 th ( γ 2 h m ) + β 2 ,

Metrics