B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]
Y. Zhou, M. C. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref]
[PubMed]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express 16(20), 16093–16103 (2008).
[Crossref]
[PubMed]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]
T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref]
[PubMed]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref]
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref]
[PubMed]
B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]
K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
A. Bassi, J. Swartling, A. Pifferi, A. Torricelli, R. Cubeddu, and C. D’Andrea, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1(13), 391–403 (1997).
[Crossref]
[PubMed]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref]
[PubMed]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref]
[PubMed]
K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref]
[PubMed]
V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref]
[PubMed]
B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]
G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]
P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]
S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]
P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]
T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]
A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]
[PubMed]
J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]
[PubMed]
T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref]
[PubMed]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
[PubMed]
B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1(13), 391–403 (1997).
[Crossref]
[PubMed]
Y. Zhou, M. C. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref]
[PubMed]
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref]
[PubMed]
G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express 16(20), 16093–16103 (2008).
[Crossref]
[PubMed]
A. Bassi, J. Swartling, A. Pifferi, A. Torricelli, R. Cubeddu, and C. D’Andrea, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref]
[PubMed]
I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref]
[PubMed]
S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref]
[PubMed]
J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref]
[PubMed]
S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref]
[PubMed]
C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]
J. A. Lott, M. J. Noble, E. M. Ochoa, L. A. Starman, and W. D. Cowant, “Tunable red vertical cavity surface emitting lasers using flexible micro-electro-mechanical top mirrors,” in IEEE/LEOS International Conference on Optical MEMS., (Cat. No.00EX399), Kauai, HI, 2000, pp. 81–82.
[Crossref]
L. O. Svaasand and B. J. Tromberg, “Properties of optical waves in turbid media,” in L. O. Svaasand, ed. (International Society for Optics and Photonics, 1991), 1525, 41–51.
T. Vo-Dinh and B. R. Masters, Biomedical Photonics Handbook, (CRC Press, 2003), Chap. 22.
J. A. Lott, M. J. Noble, E. M. Ochon, L. A. Starman, and W. D. Cowan, “Tunable red vertical cavity surface emitting lasers using flexible micro-electro-mechanical top mirrors,” in 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399) (IEEE, n.d.), pp. 81–82.
[Crossref]
A. E. Cerussi, K. Conde, J. Lam, and V. Verma, “Broadband characterization of tissue simulating phantoms using a supercontinuum laser in a scanning diffuse optical spectroscopy instrument,” in B. J. Tromberg, A. G. Yodh, E. M. Sevick-Muraca, and R. R. Alfano, eds. (SPIE, 2015), 9319, 93191Z.
B. Pezeshki, J. S. Harris Jr.,”Electrostatically tunable optical device and optical interconnect for processors,” US07939903 (1992).
THORLABS, “1300 nm MEMS VCSEL Swept Laser Source,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7109 .
B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]
H. A. Davani, C. Grasse, B. Kögel, C. Gierl, K. Zogal, T. Gründl, P. Westbergh, S. Jatta, G. Bohm, P. Meissner, A. Larsson, and M. C. Amann, “Widely electro thermal tunable bulk-micromachined MEMS-VCSEL operating around 850nm,” in 2011Int. Quantum Electron. Conf., IQEC 2011 and Conf. Lasers and Electro-Optics, CLEO Pacific Rim 2011 Incorporating the Australasian Conf. Optics, Lasers and Spectroscopy and the Australian Conf., pp. 32–34.
[Crossref]
V. Kitsmiller, M. Dummer, K. Johnson, and T. D. O’Sullivan, “Tunable vertical cavity surface emitting lasers for use in the near infrared biological window,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII, I. Gannot, ed. (SPIE, 2018), 10488, pp. 20.
B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, and M. W. Berns, “Optical property measurements in turbid media using frequency-domain photon migration,” in L. O. Svaasand, ed. (International Society for Optics and Photonics, 1991), 1525, 52–58.