Abstract

We present an approach for performing frequency domain diffuse optical spectroscopy (fd-DOS) utilizing a near-infrared tunable vertical cavity surface emitting laser (VCSEL) that enables high spectral resolution optical sensing in a miniature format. The tunable VCSEL, designed specifically for deep tissue imaging and sensing, utilizes an electrothermally tunable microelectromechanical systems topside mirror to tune the laser cavity resonance. At room temperature, the laser is tunable across 14nm from 769 to 782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in fd-DOS by measuring the optical properties of a tissue-simulating phantom over the tunable range. Optical properties were recovered within 0.0006mm−1 (absorption) and 0.09mm−1 (reduced scattering) compared to a broadband fd-DOS reference system. Our results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vertical-cavity surface-emitting lasers for data communication and sensing

Anjin Liu, Philip Wolf, James A. Lott, and Dieter Bimberg
Photon. Res. 7(2) 121-136 (2019)

Multiwatt—power highly—coherent compact single—frequency tunable Vertical—External—Cavity—Surface—Emitting—Semiconductor—Laser

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache
Opt. Express 18(14) 14627-14636 (2010)

Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 3(11) 2733-2751 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1(13), 391–403 (1997).
    [Crossref] [PubMed]
  2. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref] [PubMed]
  3. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [Crossref]
  4. P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
    [Crossref]
  5. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  6. V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
    [Crossref] [PubMed]
  7. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
    [Crossref] [PubMed]
  8. T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
    [Crossref] [PubMed]
  9. B. Pezeshki, J. S. Harris Jr.,”Electrostatically tunable optical device and optical interconnect for processors,” US07939903 (1992).
  10. THORLABS, “1300 nm MEMS VCSEL Swept Laser Source,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7109 .
  11. B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
    [Crossref]
  12. H. A. Davani, C. Grasse, B. Kögel, C. Gierl, K. Zogal, T. Gründl, P. Westbergh, S. Jatta, G. Bohm, P. Meissner, A. Larsson, and M. C. Amann, “Widely electro thermal tunable bulk-micromachined MEMS-VCSEL operating around 850nm,” in 2011Int. Quantum Electron. Conf., IQEC 2011 and Conf. Lasers and Electro-Optics, CLEO Pacific Rim 2011 Incorporating the Australasian Conf. Optics, Lasers and Spectroscopy and the Australian Conf., pp. 32–34.
    [Crossref]
  13. Y. Zhou, M. C. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
    [Crossref] [PubMed]
  14. P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
    [Crossref]
  15. G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express 16(20), 16093–16103 (2008).
    [Crossref] [PubMed]
  16. J. A. Lott, M. J. Noble, E. M. Ochoa, L. A. Starman, and W. D. Cowant, “Tunable red vertical cavity surface emitting lasers using flexible micro-electro-mechanical top mirrors,” in IEEE/LEOS International Conference on Optical MEMS., (Cat. No.00EX399), Kauai, HI, 2000, pp. 81–82.
    [Crossref]
  17. C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
    [Crossref]
  18. B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
    [Crossref]
  19. G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
    [Crossref]
  20. V. Kitsmiller, M. Dummer, K. Johnson, and T. D. O’Sullivan, “Tunable vertical cavity surface emitting lasers for use in the near infrared biological window,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII, I. Gannot, ed. (SPIE, 2018), 10488, pp. 20.
  21. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, and M. W. Berns, “Optical property measurements in turbid media using frequency-domain photon migration,” in L. O. Svaasand, ed. (International Society for Optics and Photonics, 1991), 1525, 52–58.
  22. T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
    [PubMed]
  23. L. O. Svaasand and B. J. Tromberg, “Properties of optical waves in turbid media,” in L. O. Svaasand, ed. (International Society for Optics and Photonics, 1991), 1525, 41–51.
  24. T. Vo-Dinh and B. R. Masters, Biomedical Photonics Handbook, (CRC Press, 2003), Chap. 22.
  25. J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
    [Crossref] [PubMed]
  26. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  27. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
    [Crossref] [PubMed]
  28. A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
    [Crossref] [PubMed]
  29. J. A. Lott, M. J. Noble, E. M. Ochon, L. A. Starman, and W. D. Cowan, “Tunable red vertical cavity surface emitting lasers using flexible micro-electro-mechanical top mirrors,” in 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399) (IEEE, n.d.), pp. 81–82.
    [Crossref]
  30. A. E. Cerussi, K. Conde, J. Lam, and V. Verma, “Broadband characterization of tissue simulating phantoms using a supercontinuum laser in a scanning diffuse optical spectroscopy instrument,” in B. J. Tromberg, A. G. Yodh, E. M. Sevick-Muraca, and R. R. Alfano, eds. (SPIE, 2015), 9319, 93191Z.
  31. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
    [Crossref] [PubMed]
  32. A. Bassi, J. Swartling, A. Pifferi, A. Torricelli, R. Cubeddu, and C. D’Andrea, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
    [Crossref] [PubMed]
  33. S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
    [Crossref]
  34. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
    [Crossref] [PubMed]
  35. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
    [Crossref] [PubMed]
  36. K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
    [Crossref] [PubMed]

2017 (3)

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

2016 (1)

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

2014 (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

2013 (2)

C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

2012 (3)

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

2011 (2)

2010 (1)

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

2008 (4)

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Y. Zhou, M. C. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref] [PubMed]

G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express 16(20), 16093–16103 (2008).
[Crossref] [PubMed]

2007 (1)

K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref] [PubMed]

2005 (1)

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

2004 (2)

1998 (1)

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

1997 (1)

1996 (1)

J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref] [PubMed]

1994 (1)

Abbaszadehbanaeiyan, A.

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Akulova, Y.

Amann, M.-C.

Azimi, M.

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Baek, H. M.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Bargigia, I.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Barton, J. S.

Bassi, A.

Behymer, E.

Bengtsson, J.

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Birgul, O.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Bjorlin, E. S.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Blackmore, K. M.

K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref] [PubMed]

Boas, D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Böhm, G.

Bond, T. C.

Bowers, J. E.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Burgner, C.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Cable, A. E.

Carp, S. A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Cerussi, A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Y. Zhou, M. C. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref] [PubMed]

Chen, Q.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Chung, S. H.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Coldren, C. W.

Coldren, L. A.

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express 16(20), 16093–16103 (2008).
[Crossref] [PubMed]

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Cook, K. T.

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Cubeddu, R.

Cuccia, D. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

D’Andrea, C.

Dalla Mora, A.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Davani, H. A.

Davis, S. C.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Debernardi, P.

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Durduran, T.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Durkin, A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Durkin, A. F.

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Fantini, S.

J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref] [PubMed]

Farina, A.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Farzam, P.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Feng, T.-C.

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Fish, G. A.

Fishkin, J. B.

J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref] [PubMed]

Frederiksen, H.

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Fujimoto, J. G.

Gierl, C.

Goddard, L. L.

Grasse, C.

Gratton, E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref] [PubMed]

Gruendl, T.

Grulkowski, I.

Gulsen, G.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Gustavsson, J.

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Gustavsson, J. S.

B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]

Haghany, H.

Haglund, A.

B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Haglund, E.

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Haskell, R. C.

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hill, B.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

Hsiang, D.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Huang, M. C.

Hylton, N.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Jatta, S.

Jayaraman, V.

Jiang, J.

Jiang, S.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Johansson, L.

John, D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Jong, R.

K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref] [PubMed]

Keene, S.

Klifa, C.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Knight, J. A.

K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref] [PubMed]

Kogel, B.

B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Konugolu Venkata Sekar, S.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Koomson, V. J.

C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]

Kukreti, S.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Küppers, F.

Larsson, A.

B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Leproux, A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

Li, K.

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Lilge, L.

K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref] [PubMed]

Lindner, C.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Liu, J. J.

Lu, C. C.

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

MacDonald, N. C.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Mantulin, W. M.

Martinenghi, E.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Matlock, A.

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

McAdams, M. S.

McBride, T.

Meissner, P.

Merritt, S. I.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

No, K.

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

O’Sullivan, T. D.

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

Osterberg, U.

Pagliazzi, M.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Paulsen, K.

Paulsen, K. D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Pifferi, A.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

A. Bassi, J. Swartling, A. Pifferi, A. Torricelli, R. Cubeddu, and C. D’Andrea, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref] [PubMed]

Pogue, B.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1(13), 391–403 (1997).
[Crossref] [PubMed]

Pogue, B. W.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Potsaid, B.

Qiao, P.

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Quang, T.

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Roblyer, D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

Sacks, R. N.

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Srinivasan, S.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Sthalekar, C. C.

C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]

Svaasand, L. O.

Swartling, J.

Tanamai, W.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Taroni, P.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

Tayebati, P.

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Testorf, M.

Torricelli, A.

Tromberg, B. J.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966–971 (2012).
[Crossref] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref] [PubMed]

Tsay, T.-T.

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Vakhshoori, D.

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

vandeVen, M. J.

J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref] [PubMed]

Wang, C. S.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Wang, J.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

Wang, P.

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Warren, R.

Warren, R. V.

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

Westbergh, P.

B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

Wu, S.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Yang, W.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Yeung Chan, C.

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

Yodh, A. G.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

Zhou, Y.

Zogal, K.

Biomed. Opt. Express (1)

Br. J. Radiol. (1)

K. M. Blackmore, J. A. Knight, R. Jong, and L. Lilge, “Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk,” Br. J. Radiol. 80(955), 545–556 (2007).
[Crossref] [PubMed]

Electron. Lett. (2)

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

B. Kogel, P. Westbergh, A. Haglund, J. S. Gustavsson, and A. Larsson, “Integrated MEMS-tunable VCSELs with high modulation bandwidth,” Electron. Lett. 47(13), 764–765 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

G. D. Cole, E. S. Bjorlin, Q. Chen, C. Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41(3), 390–407 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2016).
[Crossref]

IEEE Photonic. Tech. Lett. (1)

P. Tayebati, P. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonic. Tech. Lett. 10(12), 1679–1681 (1998).
[Crossref]

J. Biomed. Opt. (4)

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref] [PubMed]

T. D. O’Sullivan, K. No, A. Matlock, R. V. Warren, B. Hill, A. E. Cerussi, and B. J. Tromberg, “Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: Theory and experiments,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(3), 2307–2319 (1996).
[Crossref] [PubMed]

Radiology (1)

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Sensors Journal, IEEE (1)

C. C. Sthalekar and V. J. Koomson, “A CMOS sensor for measurement of cerebral optical coefficients using non-invasive frequency domain near infrared spectroscopy,” Sensors Journal, IEEE 13(9), 3166–3174 (2013).
[Crossref]

Other (11)

J. A. Lott, M. J. Noble, E. M. Ochoa, L. A. Starman, and W. D. Cowant, “Tunable red vertical cavity surface emitting lasers using flexible micro-electro-mechanical top mirrors,” in IEEE/LEOS International Conference on Optical MEMS., (Cat. No.00EX399), Kauai, HI, 2000, pp. 81–82.
[Crossref]

L. O. Svaasand and B. J. Tromberg, “Properties of optical waves in turbid media,” in L. O. Svaasand, ed. (International Society for Optics and Photonics, 1991), 1525, 41–51.

T. Vo-Dinh and B. R. Masters, Biomedical Photonics Handbook, (CRC Press, 2003), Chap. 22.

J. A. Lott, M. J. Noble, E. M. Ochon, L. A. Starman, and W. D. Cowan, “Tunable red vertical cavity surface emitting lasers using flexible micro-electro-mechanical top mirrors,” in 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399) (IEEE, n.d.), pp. 81–82.
[Crossref]

A. E. Cerussi, K. Conde, J. Lam, and V. Verma, “Broadband characterization of tissue simulating phantoms using a supercontinuum laser in a scanning diffuse optical spectroscopy instrument,” in B. J. Tromberg, A. G. Yodh, E. M. Sevick-Muraca, and R. R. Alfano, eds. (SPIE, 2015), 9319, 93191Z.

B. Pezeshki, J. S. Harris Jr.,”Electrostatically tunable optical device and optical interconnect for processors,” US07939903 (1992).

THORLABS, “1300 nm MEMS VCSEL Swept Laser Source,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7109 .

B. Kogel, A. Abbaszadehbanaeiyan, P. Westbergh, A. Haglund, J. Gustavsson, J. Bengtsson, E. Haglund, H. Frederiksen, P. Debernardi, and A. Larsson, “Integrated tunable VCSELs with simple MEMS technology,” in 22ndIEEE International Semiconductor Laser Conference, Kyoto, pp. 1–2 (2010).
[Crossref]

H. A. Davani, C. Grasse, B. Kögel, C. Gierl, K. Zogal, T. Gründl, P. Westbergh, S. Jatta, G. Bohm, P. Meissner, A. Larsson, and M. C. Amann, “Widely electro thermal tunable bulk-micromachined MEMS-VCSEL operating around 850nm,” in 2011Int. Quantum Electron. Conf., IQEC 2011 and Conf. Lasers and Electro-Optics, CLEO Pacific Rim 2011 Incorporating the Australasian Conf. Optics, Lasers and Spectroscopy and the Australian Conf., pp. 32–34.
[Crossref]

V. Kitsmiller, M. Dummer, K. Johnson, and T. D. O’Sullivan, “Tunable vertical cavity surface emitting lasers for use in the near infrared biological window,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII, I. Gannot, ed. (SPIE, 2018), 10488, pp. 20.

B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, and M. W. Berns, “Optical property measurements in turbid media using frequency-domain photon migration,” in L. O. Svaasand, ed. (International Society for Optics and Photonics, 1991), 1525, 52–58.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure of NIR wavelength GaAs/AlGaAs based tunable VCSEL with electrothermally actuated monolithically integrated topside MEMS mirror. (a) Cross section diagram of device structure. (b) Topside photograph of a typical fabricated device.
Fig. 2
Fig. 2 fd-DOS system configuration with a tunable VCSEL. RF power and DC bias current are combined with a bias tee and used to bias the VCSEL. An additional current source is used to provide tuning current to the VCSEL. Optical power is delivered to a tissue simulating phantom with an optical fiber. The APD module collects the signal and returns it to the network analyzer for magnitude and phase determination.
Fig. 3
Fig. 3 Performance of 775nm electrothermally actuated tunable VCSELs with applied tuning current. (a) Spectra taken across the tunable lasing wavelength range. (b) Wavelength tuning as a function of electrical tuning power in the MEMS DBR mirror. (c) Optical power and voltage versus current across the lasing range. (d) Normalized electroluminescence measurements across the full tuning range (0-11mA in 0.5mA steps) showing adjacent cavity resonances and the free spectral range of 32nm. Note (d) is a different device shown in (a)-(c).
Fig. 4
Fig. 4 VCSEL tuning speed characteristics. (a) Continuous wavelength tuning over tuning frequencies up to 4kHz. (b) 14 nm tuning range is achievable up to a frequency of approximately 500Hz. At the maximum tested tuning frequency of 4KHz the tuning range is reduced to 10nm.
Fig. 5
Fig. 5 VCSEL modulation characteristics. (a) The modulation bandwidth and (b) modulation efficiency for fixed and increasing RF injection power.
Fig. 6
Fig. 6 fd-DOS measurements on a tissue-simulating phantom. (a) Representative amplitude and phase data from the tunable VCSEL as well as their associated P1 semi-infinite fits. (b) Comparison of the measured phantom optical properties between the tunable VCSEL and a reference broadband fd-DOS system.

Tables (1)

Tables Icon

Table 1 Tunable VCSEL Optical Property Recovery

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δλ= δ λ 0 1+ ( 2πfτ ) 2 ,

Metrics