Abstract

In this work, laser absorption spectroscopy techniques are expanded in spatial resolution capability by utilizing a high-speed infrared camera to image flow fields backlit with tunable mid-wave infrared laser radiation. The laser absorption imaging (LAI) method yields spectrally-resolved and spatially-rich datasets from which quantitative species and temperature profiles can be generated using tomographic reconstruction. Access to the mid-wave infrared (3–5 µm) enables imaging of fuels, intermediates, and products of combustion in canonical small-diameter flames (< 1 cm). Example 1D measurements and 2D reconstructions of ethane (3.34 µm), carbon monoxide (4.97 µm), and carbon dioxide (4.19 µm) in an axisymmetric laminar flame are presented and discussed. LAI is shown to significantly enhance spatio-temporal data bandwidth (∼400 simultaneously sampled lines-of-sight) and resolution (∼50 µm) compared to other tomographic absorption spectroscopy techniques, and with a simplified optical arrangement.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
2D mid-infrared laser-absorption imaging for tomographic reconstruction of temperature and carbon monoxide in laminar flames

Ryan J. Tancin, R. Mitchell Spearrin, and Christopher S. Goldenstein
Opt. Express 27(10) 14184-14198 (2019)

Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows

Wen Yu Peng, Christopher S. Goldenstein, R. Mitchell Spearrin, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 55(33) 9347-9359 (2016)

Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy

Xunchen Liu, Guoqing Wang, Jianyi Zheng, Liangliang Xu, Sirui Wang, Lei Li, and Fei Qi
Opt. Express 26(24) 31983-31994 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and C. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).
    [Crossref]
  2. C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
    [Crossref]
  3. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602 (2009).
    [Crossref] [PubMed]
  4. F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
    [Crossref]
  5. F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
    [Crossref]
  6. C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23, 22494 (2015).
    [Crossref] [PubMed]
  7. J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
    [Crossref]
  8. J. Foo and P. A. Martin, “Tomographic imaging of reacting flows in 3D by laser absorption spectroscopy,” Appl. Phys. B 123(5), 123–160 (2017).
    [Crossref]
  9. R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
    [Crossref]
  10. C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
    [Crossref]
  11. R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44(31), 6786–6795 (2005).
    [Crossref] [PubMed]
  12. P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
    [Crossref]
  13. X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
    [Crossref]
  14. R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016).
    [Crossref]
  15. J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
    [Crossref]
  16. D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
    [Crossref]
  17. J. J. Harrison, N. D. C. Allen, and P. F. Bernath, “Infrared absorption cross sections for ethane (C2H6) in the 3 µ m region,” J. Quant. Spectrosc. Radiat. Transf. 111, 357–363 (2010).
    [Crossref]
  18. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
    [Crossref] [PubMed]
  19. K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization,” Appl. Opt. 45(1), 4638–4646 (2006).
    [Crossref] [PubMed]
  20. S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86, 035104 (2015).
    [Crossref] [PubMed]
  21. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
    [Crossref]

2018 (3)

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
[Crossref]

2017 (4)

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
[Crossref]

J. Foo and P. A. Martin, “Tomographic imaging of reacting flows in 3D by laser absorption spectroscopy,” Appl. Phys. B 123(5), 123–160 (2017).
[Crossref]

W. Cai and C. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).
[Crossref]

C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

2015 (4)

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23, 22494 (2015).
[Crossref] [PubMed]

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86, 035104 (2015).
[Crossref] [PubMed]

2014 (1)

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

2013 (1)

J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
[Crossref]

2010 (3)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

J. J. Harrison, N. D. C. Allen, and P. F. Bernath, “Infrared absorption cross sections for ethane (C2H6) in the 3 µ m region,” J. Quant. Spectrosc. Radiat. Transf. 111, 357–363 (2010).
[Crossref]

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

2009 (1)

2006 (1)

2005 (1)

1992 (1)

Allen, N. D. C.

J. J. Harrison, N. D. C. Allen, and P. F. Bernath, “Infrared absorption cross sections for ethane (C2H6) in the 3 µ m region,” J. Quant. Spectrosc. Radiat. Transf. 111, 357–363 (2010).
[Crossref]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Bendana, F. A.

D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
[Crossref]

Bernath, P. F.

J. J. Harrison, N. D. C. Allen, and P. F. Bernath, “Infrared absorption cross sections for ethane (C2H6) in the 3 µ m region,” J. Quant. Spectrosc. Radiat. Transf. 111, 357–363 (2010).
[Crossref]

Brockhinke, A.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

Cai, W.

Cao, Z.

Caswell, A. W.

Cen, K.

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

Cen, K. F.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Chen, J.

Chi, Y.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Dasch, C. J.

Daun, K. J.

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Egolfopoulos, F. N.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

Foo, J.

J. Foo and P. A. Martin, “Tomographic imaging of reacting flows in 3D by laser absorption spectroscopy,” Appl. Phys. B 123(5), 123–160 (2017).
[Crossref]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Girard, J. J.

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
[Crossref]

Goldenstein, C.

C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Goldenstein, C. S.

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
[Crossref]

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016).
[Crossref]

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Gord, J. R.

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Hanson, R. K.

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
[Crossref]

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016).
[Crossref]

Hanson, R.K.

C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Harrison, J. J.

J. J. Harrison, N. D. C. Allen, and P. F. Bernath, “Infrared absorption cross sections for ethane (C2H6) in the 3 µ m region,” J. Quant. Spectrosc. Radiat. Transf. 111, 357–363 (2010).
[Crossref]

Hong, Y.

J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
[Crossref]

Huang, Q.

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

Huang, Q. X.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Huang, Y.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

Jeffries, J. B.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Jeffries, J.B.

C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Kaminski, C.

W. Cai and C. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).
[Crossref]

Kohse-Höinghaus, K.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

Koppmann, J.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

Kraetschmer, T.

Lackner, A.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

Lee, D. D.

D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
[Crossref]

Li, N.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Lin, Y.

Liu, C.

Liu, F.

Liu, X.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

Ma, L.

Martin, P. A.

J. Foo and P. A. Martin, “Tomographic imaging of reacting flows in 3D by laser absorption spectroscopy,” Appl. Phys. B 123(5), 123–160 (2017).
[Crossref]

McCann, H.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86, 035104 (2015).
[Crossref] [PubMed]

Nau, P.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

Pan, H.

J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
[Crossref]

Paxton, L.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Pineda, D. I.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

Qi, F.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Roy, S.

Sanders, S. T.

Schultz, I. A.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

Schumaker, S. A.

D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
[Crossref]

Smallwood, G. J.

Song, J.

J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
[Crossref]

Spearrin, R. M.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
[Crossref]

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
[Crossref]

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016).
[Crossref]

Spearrin, R.M.

C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Tait, N.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86, 035104 (2015).
[Crossref] [PubMed]

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

Thomson, K. A.

Tsekenis, S. A.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86, 035104 (2015).
[Crossref] [PubMed]

Varghese, P. L.

Villarreal, R.

Wang, F.

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Wang, G.

J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
[Crossref]

Wang, Y.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

Wei, C.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

Wu, Q.

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

Xu, L.

Yan, J.

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

Yan, J. H.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Zhang, G.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

Zhang, H.

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (6)

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B 118(3), 361–368 (2015).
[Crossref]

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 µ m,” Appl. Phys. B 124(4), 61 (2018).
[Crossref]

D. D. Lee, F. A. Bendana, S. A. Schumaker, and R. M. Spearrin, “Wavelength modulation spectroscopy near 5 µ m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor,” Appl. Phys. B 124(5), 77 (2018).
[Crossref]

J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy,” Appl. Phys. B 112(4), 529–537 (2013).
[Crossref]

J. Foo and P. A. Martin, “Tomographic imaging of reacting flows in 3D by laser absorption spectroscopy,” Appl. Phys. B 123(5), 123–160 (2017).
[Crossref]

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B 117689–698 (2014).
[Crossref]

Appl. Phys. B. (1)

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames,” Appl. Phys. B. 124(6), 123 (2018).
[Crossref]

Combust. Flame (1)

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µ m,” Combust. Flame 178, 158–167 (2017).
[Crossref]

J. Quant. Spectr. Rad. Transfer (1)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectr. Rad. Transfer 111(15), 2139–2150 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

J. J. Harrison, N. D. C. Allen, and P. F. Bernath, “Infrared absorption cross sections for ethane (C2H6) in the 3 µ m region,” J. Quant. Spectrosc. Radiat. Transf. 111, 357–363 (2010).
[Crossref]

Meas. Sci. Technol. (1)

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 045301 (2010).
[Crossref]

Opt. Commun. (1)

F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen, “Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology,” Opt. Commun. 346, 53–63 (2015).
[Crossref]

Opt. Express (2)

Prog. Energy Combust. Sci. (2)

W. Cai and C. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).
[Crossref]

C. Goldenstein, R.M. Spearrin, J.B. Jeffries, and R.K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86, 035104 (2015).
[Crossref] [PubMed]

Other (1)

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (Left) Arrangement of lasers, mirrors, Bunsen-style flame, and IR camera. (Right) Normalized beam profiles measured by IR camera for 200-by-2 pixel regions of interest.
Fig. 2
Fig. 2 (Left) Example 200-by-2 pixel region of interest on flame. (Top) Background signals (I0) without flame (gray) and absorbance signals (It) with the flame (color) for different pixels (10 laser scans averaged). (Bottom) Example linecenter transmission for each species.
Fig. 3
Fig. 3 Absorbance αν, Voigt fits, and residuals for transitions corresponding to (Left) C2H6, (Middle) CO, and (Right) CO2. Absorbance measurements are averaged from 10 laser scans, and shaded regions indicate uncertainty corresponding to 95% confidence intervals.
Fig. 4
Fig. 4 (Far Left) Photograph of flame with the IR-imaged region outlined. (Right) Projected absorbance areas Aj,proj for selected rovibrational transitions of C2H6, CO, and CO2.
Fig. 5
Fig. 5 Data analysis for a row of pixels (z = 2.5 mm). Shaded regions indicate uncertainty. (Far left) Path-integrated absorbance area, Aj,proj(r). (Left) Reconstructed absorption coefficients, Kj(r). (Right) Vibrational temperatures of CO and CO2. (Far right) Mole fractions of the species, where a uniform temperature of 400 K is assumed to estimate X C 2 H 6.
Fig. 6
Fig. 6 Reconstructed temperature [K] (left) and mole fraction (right) images for CO and CO2. Images have been reflected about the axis of symmetry for reader clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A j , p r o j ( r ) = α ν d ν = ln ( I t I 0 ) ν d ν = 0 L ( r ) K j ( r ) d l
K j ( r ) = P S j ( T ( r ) ) X abs ( r )

Metrics