Abstract

Stimulated emission depletion (STED) microscopy is able to image fluorescence labeled samples with nanometer scale resolution. STED microscopy is typically a point-scanning method, limited by the high intensity requirement of the depletion beam. With the development of high peak power lasers, two dimensional parallel STED microscopy has been developed. Here, we develop the theoretical basis for extending STED microscopy to three dimensional imaging in parallel. This method uses structured illumination (SI) to generates a three dimensional depletion pattern. Compared to the two dimensional parallel STED microscopy, the 3D SI-STED microscopy generates intensity modulation along the light propagation direction without requiring higher laser power. This method not only achieves axial super-resolution of STED microscopy but also greatly reduces photobleaching and photodamage for 3D volumetric imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy

P. Zhang, P. M. Goodwin, and J. H. Werner
Opt. Express 22(10) 12398-12409 (2014)

Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy

Wenjie Liu, Qiulan Liu, Zhimin Zhang, Yubing Han, Cuifang Kuang, Liang Xu, Hongqin Yang, and Xu Liu
Opt. Express 27(5) 7237-7248 (2019)

Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination

Won-Sup Lee, Geon Lim, Wan-Chin Kim, Guk-Jong Choi, Han-Wook Yi, and No-Cheol Park
Opt. Express 26(8) 9901-9919 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  2. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
    [Crossref] [PubMed]
  5. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
    [Crossref] [PubMed]
  6. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
    [Crossref] [PubMed]
  7. J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
    [Crossref] [PubMed]
  8. P. Bingen, M. Reuss, J. Engelhardt, and S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19, 23716–23726 (2011).
    [Crossref] [PubMed]
  9. F. Bergermann, L. Alber, S. J. Sahl, J. Engelhardt, and S. W. Hell, “2000-fold parallelized dual-color STED fluorescence nanoscopy,” Opt. Express 23, 211–223 (2015).
    [Crossref] [PubMed]
  10. H. Zhang, M. Zhao, and L. Peng, “Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion,” Opt. Express 19, 24783–24794 (2011).
    [Crossref] [PubMed]
  11. A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
    [Crossref]
  12. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086 (2005).
    [Crossref] [PubMed]
  13. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
    [Crossref] [PubMed]
  14. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  15. M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000).
    [Crossref]
  16. S. W. Hell, “Toward fluorescence nanoscopy,” Nature Biotechnol. 21, 1347–1355 (2003).
    [Crossref]
  17. P. T. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2833–2845 (2001).
    [Crossref] [PubMed]
  18. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
    [Crossref]
  19. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20, 17653–17666 (2012).
    [Crossref] [PubMed]

2015 (2)

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

F. Bergermann, L. Alber, S. J. Sahl, J. Engelhardt, and S. W. Hell, “2000-fold parallelized dual-color STED fluorescence nanoscopy,” Opt. Express 23, 211–223 (2015).
[Crossref] [PubMed]

2013 (1)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

2008 (3)

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086 (2005).
[Crossref] [PubMed]

2003 (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nature Biotechnol. 21, 1347–1355 (2003).
[Crossref]

2001 (1)

P. T. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2833–2845 (2001).
[Crossref] [PubMed]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

1994 (1)

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Alber, L.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Bergermann, F.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Bingen, P.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Chmyrov, A.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

Chojnacki, J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

d’Este, E.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Dong, C. Y.

P. T. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2833–2845 (2001).
[Crossref] [PubMed]

Eggeling, C.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

Engelhardt, J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

F. Bergermann, L. Alber, S. J. Sahl, J. Engelhardt, and S. W. Hell, “2000-fold parallelized dual-color STED fluorescence nanoscopy,” Opt. Express 23, 211–223 (2015).
[Crossref] [PubMed]

P. Bingen, M. Reuss, J. Engelhardt, and S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19, 23716–23726 (2011).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Grotjohann, T.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

Gu, M.

M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000).
[Crossref]

Gu, Z.

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086 (2005).
[Crossref] [PubMed]

Hao, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Harke, B.

Hell, S. W.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

F. Bergermann, L. Alber, S. J. Sahl, J. Engelhardt, and S. W. Hell, “2000-fold parallelized dual-color STED fluorescence nanoscopy,” Opt. Express 23, 211–223 (2015).
[Crossref] [PubMed]

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

P. Bingen, M. Reuss, J. Engelhardt, and S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19, 23716–23726 (2011).
[Crossref] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

S. W. Hell, “Toward fluorescence nanoscopy,” Nature Biotechnol. 21, 1347–1355 (2003).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

Jakobs, S.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

Keller, J.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref] [PubMed]

Krausslich, H.-G.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

Kuang, C.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20, 17653–17666 (2012).
[Crossref] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Kwon, H. S.

P. T. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2833–2845 (2001).
[Crossref] [PubMed]

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

Li, S.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Liu, X.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20, 17653–17666 (2012).
[Crossref] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Maglione, M.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

Marquard, J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Peng, L.

Ratz, M.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

Reuss, M.

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Sahl, S. J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

F. Bergermann, L. Alber, S. J. Sahl, J. Engelhardt, and S. W. Hell, “2000-fold parallelized dual-color STED fluorescence nanoscopy,” Opt. Express 23, 211–223 (2015).
[Crossref] [PubMed]

Schneider, J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

Schonle, A.

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Shao, L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Sigrist, S. J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

So, P. T.

P. T. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2833–2845 (2001).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Ullal, C. K.

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Westphal, V.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

Wichmann, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Xue, Y.

Zahn, J.

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

Zhang, H.

Zhao, M.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Biophys. J. (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (1)

P. T. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2833–2845 (2001).
[Crossref] [PubMed]

Nature Biotechnol. (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nature Biotechnol. 21, 1347–1355 (2003).
[Crossref]

Nature Methods (3)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts,’,” Nature Methods 10, 737–740 (2013).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

J. Schneider, J. Zahn, M. Maglione, S. J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Krausslich, S. J. Sahl, J. Engelhardt, and S. W. Hell, “Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics,” Nature Methods 12, 827–830 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U. S. A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086 (2005).
[Crossref] [PubMed]

Science (2)

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (A) The diagram of the 3D SI-STED microscopy. The 635 nm excitation beam generates widefield illumination on the image plane. The 775 nm depletion beam generates 3D SI on the image plane by phase modulation on the Fourier plane using spatial light modulator (SLM). (B) The minimum intensity of SI becomes zero (in the center of dark nodes) when the center beam is 2.7 times brighter than the other four beams. (C) The diagram shows confined fluorescence signals are generated after widefield excitation and SI depletion.
Fig. 2
Fig. 2 The coherent interference of five beams fills the “missing cone” of widefield illumination. (A) MTF of widefield illumination that shows the “missing cone” in Fourier domain. (B) Frequency components of five beams coherent interference. Different colors are used for identify different frequency components. (C) MTF of SI that has no “missing cone”.
Fig. 3
Fig. 3 The PSF of effective emission spot under different depletion power. s = Imax/Isat. The widefield PSF is corresponding to s = 0.
Fig. 4
Fig. 4 Depletion patterns and effective emission regions of SI-STED microscopy (Imax/Isat = 10) (A) by π/4 linear polarized beams and (B) by circular polarized beams. Linear polarized beams generate asymmetric depletion pattern, while circular polarized beams generate symmetric depletion pattern. Both cases use uniform widefield illumination as excitation beam.
Fig. 5
Fig. 5 The PSF comparison of (A) widefield microscopy and (B) SI-STED microscopy in 3D volume view. The cross-section comparison of (C) lateral PSF (D) axial PSF. The comparison of (E) lateral MTF and (F) axial MTF of widefield microscopy and SI-STED microscopy.
Fig. 6
Fig. 6 The MTF of (A) widefield microscopy and (B) SI-STED microscopy in kxkz plane. Each figure is normalized to its peak value. Noticed the MTF of SI-STED microscopy is broadened in kz, which fills the “missing cone” and has axial sectioning ability.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ E 1 = A 1 ( x x ^ + i y y ^ ) exp [ i ( k z z z ^ + α 1 ) ) ] E 2 = A 2 ( cos θ x x ^ + i y y ^ + sin θ z z ^ ) exp [ i ( k x sin θ x x ^ + k z cos θ z z ^ + α 2 ) ) ] E 3 = A 3 ( cos θ x x ^ + i y y ^ sin θ z z ^ ) exp [ i ( k x sin θ x x ^ + k z cos θ z z ^ + α 3 ) ) ] E 4 = A 4 ( x x ^ + i cos θ y y ^ + i sin θ z z ^ ) exp [ i ( k y sin θ y y ^ + k z cos θ z z ^ + α 4 ) ) ] E 5 = A 5 ( x x ^ + i cos θ y y ^ i sin θ z z ^ ) exp [ i ( k y sin θ y y ^ + k z cos θ z z ^ + α 5 ) ) ] .
{ E 1 = A 1 ( x x ^ + y y ^ ) exp [ i ( k z z z ^ + α 1 ) ) ] E 2 = A 2 ( cos θ x x ^ + y y ^ + sin θ z z ^ ) exp [ i ( k x sin θ x x ^ + k z cos θ z z ^ + α 2 ) ) ] E 3 = A 3 ( cos θ x x ^ + y y ^ sin θ z z ^ ) exp [ i ( k x sin θ x x ^ + k z cos θ z z ^ + α 3 ) ) ] E 4 = A 4 ( x x ^ + cos θ y y ^ + sin θ z z ^ ) exp [ i ( k y sin θ y y ^ + k z cos θ z z ^ + α 4 ) ) ] E 5 = A 5 ( x x ^ + cos θ y y ^ sin θ z z ^ ) exp [ i ( k y sin θ y y ^ + k z cos θ z z ^ + α 5 ) ) ] .
I = A 1 2 + A 2 2 + A 3 2 + A 4 2 + A 5 2 + A 1 A 2 cos [ k x sin θ x + k z ( cos θ 1 ) z + α 2 α 1 ] ( cos θ + 1 ) + A 1 A 3 cos [ k x sin θ x k z ( cos θ 1 ) z α 3 + α 1 ] ( 1 cos θ ) + A 1 A 4 cos [ k y sin θ y + k z ( cos θ 1 ) z + α 4 α 1 ] ( cos θ + 1 ) + A 1 A 5 cos [ k y sin θ y k z ( cos θ 1 ) z α 5 + α 1 ] ( 1 cos θ ) + 2 A 2 A 3 cos ( 2 k x sin θ x + α 2 α 3 ) sin 2 θ + 2 A 4 A 5 cos ( 2 k y sin θ y + α 4 α 5 ) sin 2 θ + A 2 A 4 [ 2 cos θ cos ( k x sin θ x k y sin θ y + α 2 α 4 ) ] + A 2 A 4 [ sin 2 θ sin ( k x sin θ x k y sin θ y + α 2 α 4 ) ] A 3 A 5 [ 2 cos θ cos ( k x sin θ x k y sin θ y + α 5 α 3 ) ] A 3 A 5 [ sin 2 θ sin ( k x sin θ x k y sin θ y + α 5 α 3 ) ] + A 2 A 5 sin ( k x sin θ x + k y sin θ y + α 2 α 5 ) sin 2 θ A 3 A 4 sin ( k x sin θ x + k y sin θ y + α 4 α 3 ) sin 2 θ .
d = λ STED 2 NA 1 4 + ( π / 2 ) 2 I max I sat sin ω sin θ ,
I ( r ) = r f ( r , r ) I ( r , r ) = r δ ( r n T r ) I ( r , r ) .

Metrics