Abstract

The fabrication ability of graphene nanostructures is the cornerstone of graphene-based devices, which are of particular interest because of their broad optical response and gate-tunable properties. Here, via laser-induced redox reaction of graphene and silica, we fabricate nano-scale graphene structures by femtosecond laser direct writing. The resolution of destructed graphene lines is far beyond the diffraction limit up to 100 nm with a precision as small as ± 7 nm. Consequently, graphene nanostructures are fabricated precisely and excellent plasmon responses are detected. This novel fabrication method of graphene nanostructures has the advantages of low costs, high efficiency, maskless and especially high precision, which would pave the way for practical application of graphene-based optical and electronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Beat the diffraction limit in 3D direct laser writing in photosensitive glass

Matthieu Bellec, Arnaud Royon, Bruno Bousquet, Kevin Bourhis, Mona Treguer, Thierry Cardinal, Martin Richardson, and Lionel Canioni
Opt. Express 17(12) 10304-10318 (2009)

Readout contrast beyond diffraction limit by a slab of random nanostructures

Tai Chi Chu, Din Ping Tsai, and Wei-Chih Liu
Opt. Express 15(1) 12-23 (2007)

Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass

Tomas Kohoutek, Mark A. Hughes, Jiri Orava, Morio Mastumoto, Takashi Misumi, Hiroyasu Kawashima, Takenobu Suzuki, and Yasutake Ohishi
J. Opt. Soc. Am. B 29(10) 2779-2786 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  2. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
    [Crossref] [PubMed]
  3. H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
    [Crossref] [PubMed]
  4. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [Crossref] [PubMed]
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  6. Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
    [Crossref] [PubMed]
  7. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  8. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
    [Crossref] [PubMed]
  9. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  10. B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene,” J. Opt. 18(3), 035402 (2016).
    [Crossref]
  11. P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
    [Crossref]
  12. P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
    [Crossref] [PubMed]
  13. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
    [Crossref]
  14. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  15. B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
    [Crossref] [PubMed]
  16. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
    [Crossref] [PubMed]
  17. Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
    [Crossref] [PubMed]
  18. W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).
  19. W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
    [Crossref] [PubMed]
  20. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
    [Crossref] [PubMed]
  21. J. W. Perry, “Two Beams Squeeze Feature Sizes in Optical Lithography,” Science 324(5929), 892–893 (2009).
    [Crossref] [PubMed]
  22. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref] [PubMed]
  23. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref] [PubMed]
  24. X. Z. Zhang, X. Feng, and J. J. Xu, “The mechanisms and research progress of laser fabrication technologies beyond diffraction limit,” Wuli Xuebao 66, 144207 (2017).
  25. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
    [Crossref] [PubMed]
  26. K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
    [Crossref] [PubMed]
  27. Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
    [Crossref]
  28. Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
    [Crossref]
  29. Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
    [Crossref]
  30. I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
    [Crossref]
  31. X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett. 92(9), 091113 (2008).
    [Crossref]
  32. J. Lee, P. Miller, and I. Cutler, “Carbothermal reduction of silica,” in Reactivity of Solids (Springer, 1977), pp. 707–711.
  33. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [Crossref] [PubMed]
  34. A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
    [Crossref]
  35. Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
    [Crossref] [PubMed]
  36. T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]

2017 (2)

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

X. Z. Zhang, X. Feng, and J. J. Xu, “The mechanisms and research progress of laser fabrication technologies beyond diffraction limit,” Wuli Xuebao 66, 144207 (2017).

2016 (4)

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene,” J. Opt. 18(3), 035402 (2016).
[Crossref]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

2015 (3)

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

2014 (1)

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (5)

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

2011 (2)

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (4)

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

2009 (4)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

J. W. Perry, “Two Beams Squeeze Feature Sizes in Optical Lithography,” Science 324(5929), 892–893 (2009).
[Crossref] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

2008 (3)

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett. 92(9), 091113 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

2007 (1)

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

2005 (1)

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

2004 (2)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

1999 (1)

Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
[Crossref]

Aksay, I. A.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Alaee, R.

Alonso-González, P.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Andrew, T. L.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Avouris, P.

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Baets, R.

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Basov, D. N.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Bieri, M.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Blankenburg, S.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Bobrinetskiy, I. I.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Braun, T.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Cai, J.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Cai, W.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Casanova, F.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Centeno, A.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Chen, J. H.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Chen, Q.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Chim, W. K.

Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
[Crossref]

Chong, T. C.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Dai, S.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

de Abajo, F. J. G.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Dimitrakopoulos, C.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Dong, X. Z.

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett. 92(9), 091113 (2008).
[Crossref]

Duan, X. M.

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett. 92(9), 091113 (2008).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Emelianov, A. V.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Farhat, M.

Farmer, D. B.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Fasel, R.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Feng, X.

X. Z. Zhang, X. Feng, and J. J. Xu, “The mechanisms and research progress of laser fabrication technologies beyond diffraction limit,” Wuli Xuebao 66, 144207 (2017).

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fogler, M. M.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Fuhrer, M. S.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, J.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Goldflam, M. D.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Grill, A.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Gu, M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Han, S. J.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Heersche, H. B.

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

Hillenbrand, R.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Hong, M. H.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Hossain, M. M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Hueso, L. E.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Ishigami, M.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jaafar, R.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Jang, C.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Janssen, G. C.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Jarillo-Herrero, P.

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

Jenkins, K. A.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, X.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Law, Y. Z.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Lederer, F.

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, Y.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Lin, Y. M.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Liu, J.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Liu, M. K.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Liu, P.

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

Liu, X.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Low, T.

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Lu, H.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Lu, Y. F.

Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
[Crossref]

Luo, W.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

Ma, Z.

Mai, Z. H.

Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
[Crossref]

Majedi, A. H.

B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene,” J. Opt. 18(3), 035402 (2016).
[Crossref]

Mastel, S.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

McLeod, A. S.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Menon, R.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Meric, I.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Morpurgo, A. F.

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

Müllen, K.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Muoth, M.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Naessens, K.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Neto, A. H. C.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Oostinga, J. B.

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Otero, N.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Ottevaere, H.

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Perry, J. W.

J. W. Perry, “Two Beams Squeeze Feature Sizes in Optical Lithography,” Science 324(5929), 892–893 (2009).
[Crossref] [PubMed]

Pesquera, A.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Post, K. W.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Qiu, G.

Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
[Crossref]

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Ren, M.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

Rockstuhl, C.

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Romero, P. M.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Ruffieux, P.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Safavi-Naeini, S.

B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene,” J. Opt. 18(3), 035402 (2016).
[Crossref]

Saleh, M.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Seitsonen, A. P.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Semnani, B.

B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene,” J. Opt. 18(3), 035402 (2016).
[Crossref]

Shao, Y.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Shi, B.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Sow, C. H.

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Sun, H.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Sun, Y.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Tan, C. K.

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tang, L. A.

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Thienpont, H.

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Tsai, H. Y.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Valdes-Garcia, A.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Van Daele, P.

Vandersypen, L. M.

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

Varghese, B.

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Vélez, S.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wagner, M.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, J.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Wang, L.

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

Wang, W. J.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wu, H.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

Wu, J. S.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Wu, W.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

Wu, Y.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

Xia, H.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Xiang, Y.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

Xiao, S.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Xu, J.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

Xu, J. J.

X. Z. Zhang, X. Feng, and J. J. Xu, “The mechanisms and research progress of laser fabrication technologies beyond diffraction limit,” Wuli Xuebao 66, 144207 (2017).

Zeng, C.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Zhan, Y.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Zhang, N.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

Zhang, Q.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Zhang, X.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

Zhang, X. Z.

X. Z. Zhang, X. Feng, and J. J. Xu, “The mechanisms and research progress of laser fabrication technologies beyond diffraction limit,” Wuli Xuebao 66, 144207 (2017).

Zhang, Y.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Zhao, Z. S.

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett. 92(9), 091113 (2008).
[Crossref]

Zhou, Y.

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Zhu, S.

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Zurutuza, A.

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Zurutuza Elorza, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

2D Mater. (1)

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3, 045001 (2016).

ACS Nano (1)

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

Y. Zhou, Q. Bao, B. Varghese, L. A. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams,” Adv. Mater. 29(30), 1701083 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, “Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip,” Appl. Phys. Lett. 75(16), 2359–2361 (1999).
[Crossref]

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett. 92(9), 091113 (2008).
[Crossref]

P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Electroanalysis (1)

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene Based Electrochemical Sensors and Biosensors: A Review,” Electroanalysis 22(10), 1027–1036 (2010).
[Crossref]

J. Opt. (1)

B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene,” J. Opt. 18(3), 035402 (2016).
[Crossref]

Nano Lett. (1)

Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. Janssen, M. M. Fogler, and D. N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Lett. 15(12), 8271–8276 (2015).
[Crossref] [PubMed]

Nano Today (1)

Y. Zhang, Q. Chen, H. Xia, and H. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Nature (4)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature 446(7131), 56–59 (2007).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Sci. Rep. (2)

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene,” Sci. Rep. 6(1), 26796 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Science (7)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-Scale Graphene Integrated Circuit,” Science 332(6035), 1294–1297 (2011).
[Crossref] [PubMed]

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

J. W. Perry, “Two Beams Squeeze Feature Sizes in Optical Lithography,” Science 324(5929), 892–893 (2009).
[Crossref] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Wuli Xuebao (1)

X. Z. Zhang, X. Feng, and J. J. Xu, “The mechanisms and research progress of laser fabrication technologies beyond diffraction limit,” Wuli Xuebao 66, 144207 (2017).

Other (1)

J. Lee, P. Miller, and I. Cutler, “Carbothermal reduction of silica,” in Reactivity of Solids (Springer, 1977), pp. 707–711.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The processing flow chart. (a) The substrate: 6H-SiC. (b) Graphene transfer. (c) Silica-graphene-SiC sandwich structure. (d) Fabrication scheme of the LIGO-LDW method. (e) Structured graphene.
Fig. 2
Fig. 2 SEM images of graphene nanostructures fabricated by the LIGO-LDW method and the dependence of the fabrication resolution on laser power. (a) SEM images of destructed lines with different width (dark lines in the images). (b) Experimental values (black squares) and the fitting curve (red) of the destructed linewidth as a function of laser power. (c) Large scale graphene ribbon array. The width of destructed lines is about 186 nm. (d) Large scale graphene square array. The side length of each graphene square is about 220 nm.
Fig. 3
Fig. 3 Characterization of samples fabricated by the LIGO-LDW method. (a) Raman spectra of the sample. The black and red curves correspond to the unprocessed and processed regions, respectively. Scale bar, 1 μm. (b) AFM image indicating a 1.2 nm embossment at the destructed region. (c) AES spectra of the fabricated sample.
Fig. 4
Fig. 4 Near-fields of graphene wedge structures. (a) The near-field distributions of an “X” structure at an excitation wavelength of 10.195 μm. (b) SEM image. Scale bar, 500 nm. The upper near-field profiles were taken along the corresponding dash lines in (a). (c) and (d) The near-field distributions at an excitation wavelength of 9.588 μm.
Fig. 5
Fig. 5 Plasmonic characteristics of graphene ribbons. The linewidth of the destructed graphene (dark regions) is 230 nm. The incident wavelengths λ0 is 9.588 μm. (a) SEM and near-field images of graphene ribbons with widths of 480, 430, 370, and 330 nm. (b) SEM and near-field images of graphene ribbons with widths of 150, 140, 80, and 70 nm. (c)-(f) Experimental (black curves) and simulated (red curves) near-filed profiles perpendicular to graphene ribbons along the white dashed lines from left to right in (a) and (b).

Metrics