Abstract

To meet the ever-increasing bandwidth demands in the future broadband wireless networks, the millimeter-wave (mm-wave) frequency region is being actively perused, owing to its broad bandwidth and high frequencies. In this paper, a photonic mm-wave system is proposed and experimentally demonstrated based on the injection locking of a direct multilevel modulated laser to a spacing-tunable two-tone light. Since the mm-wave frequency of the generated signal is locked to the frequency spacing of the injected two-tone light, it shows better frequency stabilization than the schemes based on two free-running lasers. Moreover, by simply tuning the tone spacing, the mm-wave frequency could be easily re-configured, offering flexibility in the mm-wave signal generation. Instead of using complex and expensive optical modulators, the multilevel modulation on the mm-wave data carrier is implemented through the direct multilevel modulation of a laser and the injection locking. A 28 Gbps four-level pulse amplitude modulation (PAM4) is realized by biasing a 10 G-class laser at a current far from the threshold, providing a cost-effective and simple mm-wave generation scheme. In the experiment, a photonic approach to generating 28 Gbps PAM4 60 GHz/80 GHz mm-wave signals is experimentally demonstrated. A power penalty of less than 0.2 dB is observed for the filtered-out PAM4 signals with respect to the original PAM4. Besides, an ultra-low phase noise of up to −98 dBc/Hz is obtained for the mm-wave carriers after the injection locking. The proposed scheme possesses the flexibility and frequency stability of the mm-wave frequency, and also has low cost and implementation complexity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser frequency fixation by multimode optical injection locking

Arfan Sindhu Tistomo and Sangyoun Gee
Opt. Express 19(2) 1081-1090 (2011)

Enhanced optical frequency comb generation by pulsed gain-switching of optically injected semiconductor lasers

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias
Opt. Express 27(6) 9155-9163 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, X. Li, and N. Chi, “Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system,” Opt. Express 21(19), 22885–22904 (2013).
    [Crossref] [PubMed]
  2. S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
    [Crossref]
  3. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
    [Crossref] [PubMed]
  4. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express 19(25), 24944–24949 (2011).
    [Crossref] [PubMed]
  5. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Technol. 21(12), 3043–3051 (2003).
    [Crossref]
  6. M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
    [Crossref]
  7. M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
    [Crossref]
  8. L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
    [Crossref]
  9. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
    [Crossref]
  10. C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
    [Crossref]
  11. A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
    [Crossref]
  12. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
    [Crossref]
  13. M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit radio-over-fiber link for converged baseband and millimeter-wave band signal transmission using cascaded injection-locked Fabry-Pérot laser diodes,” Opt. Express 17(10), 7844–7852 (2009).
    [Crossref] [PubMed]
  14. C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
    [Crossref]
  15. T. Nikas, A. Bogris, and D. Syvridis, “Two-mode injection-locked FP laser receiver: a regenerator for long-distance stable fiber delivery of radio-frequency standards,” Opt. Lett. 40(6), 886–889 (2015).
    [Crossref] [PubMed]
  16. L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
    [Crossref] [PubMed]
  17. K. Balakier, M. J. Fice, F. van Dijk, G. Kervella, G. Carpintero, A. J. Seeds, and C. C. Renaud, “Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz,” Opt. Express 22(24), 29404–29412 (2014).
    [Crossref] [PubMed]
  18. A. Kanno and T. Kawanishi, “Frequency-stabilized radio-over-fiber signal generation based on optical frequency comb source with injection-locking technique,” in Proc. IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), Seattle, WA, 1–4.
    [Crossref]
  19. C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
    [Crossref]
  20. J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
    [Crossref]
  21. Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
    [Crossref] [PubMed]
  22. X. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26(3), 2569–2583 (2018).
    [Crossref] [PubMed]
  23. E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
    [Crossref]
  24. S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
    [Crossref]
  25. R. Slavik, Z. Liu, and D. J. Richardson, “Optical injection locking for carrier phase recovery and regeneration,” in Proc. OFC (2017), paper Th4I.3.
    [Crossref]
  26. Z. Liu, J.-Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavík, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
    [Crossref]
  27. H. Wang, W. Zhou, and J. Yu, “PAM-4 signal delivery in one radio-over-fiber system,” Opt. Eng. 56(10), 106107 (2017).
    [Crossref]
  28. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
    [Crossref] [PubMed]

2018 (2)

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

X. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26(3), 2569–2583 (2018).
[Crossref] [PubMed]

2017 (2)

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

H. Wang, W. Zhou, and J. Yu, “PAM-4 signal delivery in one radio-over-fiber system,” Opt. Eng. 56(10), 106107 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (2)

2013 (1)

2012 (1)

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

2011 (4)

2010 (2)

A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
[Crossref]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

2009 (3)

2004 (1)

M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
[Crossref]

2003 (2)

2001 (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[Crossref]

1998 (1)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

1997 (1)

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

Amann, M. C.

Arlunno, V.

Bae, S. H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Balakier, K.

Benjamin, S.

Besnard, P.

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

Blin, S.

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

Bogris, A.

Bondiou, M.

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

Borkowski, R.

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Caballero, A.

Carpintero, G.

Chan, S. C.

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

Chang, G.-K.

Chang-Hasnain, C. J.

Chen, J.

Chen, Z.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Chi, N.

Chu, S. T.

Chung, Y. C.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Cui, C.

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

Deng, L.

Dogadaev, A.

Duan, J.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Fan, L.

Fice, M. J.

Fortusini, D.

Fukushima, S.

Gabet, R.

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Guignard, C.

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

Guo, P.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Han, S.-K.

Haris, M.

Hofmann, W.

Hong, C.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Hong, M.-K.

Hosako, I.

Hu, W.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Huang, M.-F.

Inagaki, K.

A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
[Crossref] [PubMed]

A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
[Crossref] [PubMed]

M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
[Crossref]

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[Crossref]

Ishimura, S.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Ji, P. N.

Jia, Z.

Kakande, J.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Kanno, A.

Karinou, F.

Kawanishi, T.

Kelly, B.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Kervella, G.

Kim, H.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Kim, J.-Y.

Kitayama, K.

Kon, B. G.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Kuri, T.

Lau, E. K.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Li, H.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Li, L.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Li, M.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Li, X.

Liang, Q.

Little, B. E.

Liu, Z.

Z. Liu, J.-Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavík, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Marcenac, D. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

Mitchell, A.

Mizuguchi, Y.

M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
[Crossref]

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[Crossref]

Monroy, I. T.

Moodie, D. G.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

Morandotti, R.

Morohashi, I.

Moss, D. J.

Muramoto, Y.

Nesset, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

Ng’oma, A.

Nguyen, T. G.

Nikas, T.

Nishimura, K.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Noel, L.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

O’Carroll, J.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Ogusu, M.

M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
[Crossref]

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[Crossref]

Ohira, T.

M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
[Crossref]

Pang, X.

Parekh, D.

Pedersen, J. S.

Phelan, R.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Renaud, C. C.

Richardson, D. J.

Z. Liu, J.-Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavík, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Rohde, D.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Roubeau, F.

Sakamoto, T.

Sauer, M.

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Seeds, A. J.

Shoeiby, M.

Silva, C. F. C.

Slavík, R.

Z. Liu, J.-Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavík, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Stéphan, G. M.

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

Sun, C.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Suzuki, M.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Syvridis, D.

Tanaka, K.

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Tang, X.

van Dijk, F.

Wake, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

Wang, H.

H. Wang, W. Zhou, and J. Yu, “PAM-4 signal delivery in one radio-over-fiber system,” Opt. Eng. 56(10), 106107 (2017).
[Crossref]

Wang, T.

Westbrook, L. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

Won, Y.-Y.

Wong, L. J.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Wu, D. S.

Wu, H.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Wu, J.

Wu, M. C.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Wu, Z.

Xia, G.

Xu, A.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Xu, X.

Yang, W.

Yoshida, Y.

Yu, J.

Yu, X.

Zhang, C.

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Zhou, W.

H. Wang, W. Zhou, and J. Yu, “PAM-4 signal delivery in one radio-over-fiber system,” Opt. Eng. 56(10), 106107 (2017).
[Crossref]

Zhu, L.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Zibar, D.

C. R. Phys. (1)

S. Blin, C. Guignard, P. Besnard, R. Gabet, G. M. Stéphan, and M. Bondiou, “Phase and spectral properties of optically injected semiconductor lasers,” C. R. Phys. 4(6), 687–699 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[Crossref]

IEEE Photonics J. (1)

S. Ishimura, B. G. Kon, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

C. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF system with multi-Gb/s-QAM OFDM single-sideband modulation based on injection-locked lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Pérot laser,” IEEE Trans. Microw. Theory Tech. 52(2), 498–507 (2004).
[Crossref]

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[Crossref]

J. Lightwave Technol. (4)

Nat. Commun. (1)

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5(1), 5911 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

H. Wang, W. Zhou, and J. Yu, “PAM-4 signal delivery in one radio-over-fiber system,” Opt. Eng. 56(10), 106107 (2017).
[Crossref]

Opt. Express (8)

A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
[Crossref] [PubMed]

L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
[Crossref] [PubMed]

K. Balakier, M. J. Fice, F. van Dijk, G. Kervella, G. Carpintero, A. J. Seeds, and C. C. Renaud, “Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz,” Opt. Express 22(24), 29404–29412 (2014).
[Crossref] [PubMed]

X. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26(3), 2569–2583 (2018).
[Crossref] [PubMed]

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit radio-over-fiber link for converged baseband and millimeter-wave band signal transmission using cascaded injection-locked Fabry-Pérot laser diodes,” Opt. Express 17(10), 7844–7852 (2009).
[Crossref] [PubMed]

J. Yu, X. Li, and N. Chi, “Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system,” Opt. Express 21(19), 22885–22904 (2013).
[Crossref] [PubMed]

A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
[Crossref] [PubMed]

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express 19(25), 24944–24949 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (2)

A. Kanno and T. Kawanishi, “Frequency-stabilized radio-over-fiber signal generation based on optical frequency comb source with injection-locking technique,” in Proc. IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), Seattle, WA, 1–4.
[Crossref]

R. Slavik, Z. Liu, and D. J. Richardson, “Optical injection locking for carrier phase recovery and regeneration,” in Proc. OFC (2017), paper Th4I.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Operation principle. DML: direct-modulated laser.
Fig. 2
Fig. 2 Experimental setup for generating optical mm-wave signals. PD: photodetector, ATT: attenuator, BPF: bandpass filter, PC: polarization controller, LD: laser, IM: intensity modulator, EDFA: Erbium-doped fiber amplifier.
Fig. 3
Fig. 3 Measured optical spectra (resolution: 0.01nm) of (a) optical frequency comb (OFC), and filtered two-tone light from an OFC with tunable frequency spacing of (b) 60 GHz and (c) 80 GHz.
Fig. 4
Fig. 4 Measured optical spectra (resolution: 0.01nm) of the directly-modulated DML (red lines) and the output after injection locking (blue lines) with the injected (a) 60 GHz and (b) 80 GHz two-tone light. Insets: Zoom-in plots of the data carriers (scales: 1GHz/div, 5dB/div).
Fig. 5
Fig. 5 Measured SSB phase noise of the 60 GHz mm-wave using a two-tone seeding light, the two-tone light after injection locking, and two free-running lasers.
Fig. 6
Fig. 6 Measured E/O frequency response of direct modulation by driving DML using RF clocks with different frequency (5 GHz to 15 GHz) under different bias currents.
Fig. 7
Fig. 7 Measured BER vs. received optical power of the 28 Gbps PAM4 signals from the directly modulated DML PAM4 signal (open symbols) and the filtered PAM4 data carrier after the injection locking (filled symbols).
Fig. 8
Fig. 8 Measured eyes of 28 Gb/s PAM4 signals: (a) the original PAM4 signal from DML, the filtered PAM4 signals from the generated (b) 60 GHz and (c) 80 GHz mm-wave signals. (Time scale: half symbol period, i.e., 1/2fS, (fS = 14GHz) per division.

Metrics