Abstract

Metamaterial absorbers open a new door for the design of optical harvesting devices ranging from the microwave to optical regimes. The top resonator in these structures is critical for the function of metamaterial absorbers. The resonant frequency, bandwidth, and maximum absorption mainly depend on the choice of material, shape, and size of the top resonator. The maximum absorption is generally impaired as the size of the resonator changes, due to the high sensitivity of impedance matching with the medium. In this paper, we experimentally demonstrate a metamaterial perfect absorber with unabated absorption as its resonator’s size changes. The perfect absorber is based on an array of metal squares inscribed with a hollow square. The absorption maxima stay above 98% as the size changes from 600 to 1500 nm in the mid-infrared region, agreeing with simulated results yielding an absorption of ~100%. The unabated absorption properties can be interpreted by the equivalent circuit theory. Moreover, the experimental absorption remains above 91% for incident angles change up to 50°, both for TE and TM polarization. Our work offers a method for achieving stable perfect absorption in sensing, filtering, and selective thermal emission.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial

Yang Bai, Li Zhao, Dongquan Ju, Yongyuan Jiang, and Linhua Liu
Opt. Express 23(7) 8670-8680 (2015)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Tretyakov, A. Urbas, and N. Zheludev, “The century of metamaterials,” J. Opt. 19(8), 080404 (2017).
    [Crossref]
  2. I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58(1), 1–24 (2013).
    [Crossref]
  3. S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
    [Crossref]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  5. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  6. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  7. P. Kung and S. Kim, “Terahertz metamaterial absorbers for sensing and imaging,” in Proceedings of Progress in Electromagnetics Research Symposium, 2013), 232–235.
  8. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref] [PubMed]
  9. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  10. Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
    [Crossref]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  12. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
    [Crossref] [PubMed]
  13. M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
    [Crossref]
  14. P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
    [Crossref]
  15. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
    [Crossref]
  16. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  17. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res. 113, 103–110 (2011).
    [Crossref]
  18. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  19. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref] [PubMed]
  20. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref] [PubMed]
  21. K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
    [Crossref]
  22. Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
    [Crossref] [PubMed]
  23. Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
    [Crossref]
  24. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  25. Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
    [Crossref] [PubMed]
  26. X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
    [PubMed]
  27. M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A. 109(4), 769–773 (2012).
    [Crossref]
  28. J.-B. Brückner, J. Le Rouzo, L. Escoubas, G. Berginc, O. Calvo-Perez, N. Vukadinovic, and F. Flory, “Metamaterial filters at optical-infrared frequencies,” Opt. Express 21(14), 16992–17006 (2013).
    [Crossref] [PubMed]
  29. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  30. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
    [Crossref] [PubMed]
  31. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  32. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  33. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  34. B. T. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng. 52(1), 013801 (2013).
    [Crossref]
  35. A. Sellier, T. V. Teperik, and A. de Lustrac, “Resonant circuit model for efficient metamaterial absorber,” Opt. Express 21(S6), A997–A1006 (2013).
    [Crossref] [PubMed]
  36. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [Crossref] [PubMed]
  37. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  38. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.
  40. P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
    [Crossref]

2018 (4)

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
[Crossref] [PubMed]

X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

2017 (1)

S. Tretyakov, A. Urbas, and N. Zheludev, “The century of metamaterials,” J. Opt. 19(8), 080404 (2017).
[Crossref]

2016 (2)

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

2014 (3)

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

2013 (7)

2012 (6)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A. 109(4), 769–773 (2012).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

2011 (8)

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res. 113, 103–110 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2010 (3)

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (2)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Alexander, G.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Alhabeb, M.

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Alves, F.

B. T. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng. 52(1), 013801 (2013).
[Crossref]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

Ashalley, E.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Barrett, J.

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Berginc, G.

Bingham, C.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Bingham, C. M.

Boltasseva, A.

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Brückner, J.-B.

Calvo-Perez, O.

Chaudhuri, K.

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Chen, H.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res. 113, 103–110 (2011).
[Crossref]

Chen, H.-T.

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, L. Y.

Cheng, D.

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Chennupati, J.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Choi, E. H.

Chowdhury, D. R.

Cui, T. J.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Cummer, S.

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

de Lustrac, A.

Deng, L.

Dong, G.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
[Crossref] [PubMed]

Elbahri, M.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A. 109(4), 769–773 (2012).
[Crossref]

Escoubas, L.

Fanlu, Z.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Faupel, F.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A. 109(4), 769–773 (2012).
[Crossref]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Flory, F.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gogotsi, Y.

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Govorov, A.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Govorov, A. O.

X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Grbovic, D.

B. T. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng. 52(1), 013801 (2013).
[Crossref]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

Gu, S.

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Guo, J.

Hand, T.

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A. 109(4), 769–773 (2012).
[Crossref]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

Hoe, T.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Hou, D.-Y.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Hou, X.-W.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Hu, C.

Huang, C.

Huang, L.

Huang, W.-Q.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Jang, W. H.

Jiang, W. X.

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Karunasiri, G.

B. T. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng. 52(1), 013801 (2013).
[Crossref]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

Kearney, B.

Kearney, B. T.

B. T. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng. 52(1), 013801 (2013).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Khosravi Khorashad, L.

X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Kim, K. W.

Kim, S.

P. Kung and S. Kim, “Terahertz metamaterial absorbers for sensing and imaging,” in Proceedings of Progress in Electromagnetics Research Symposium, 2013), 232–235.

Kong, X.-T.

X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Kropelnicki, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

Kung, P.

P. Kung and S. Kim, “Terahertz metamaterial absorbers for sensing and imaging,” in Proceedings of Progress in Electromagnetics Research Symposium, 2013), 232–235.

Kwong, D.-L.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

Lan, F.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Landy, N. I.

Le Rouzo, J.

Lee, C.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

Lee, Y.

Li, H.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, J.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Li, M.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Luo, S.-N.

Luo, X.

Ma, H. F.

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Padilla, W.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Park, J. W.

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Peng, Y.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Pitchappa, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

Popa, B.-I.

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Premaratne, M.

Pu, M.

Ramani, S.

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Reiten, M. T.

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Rhee, J. Y.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sellier, A.

Shalaev, V. M.

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shen, X.

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Si, L.-M.

Singh, N.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Tao, H.

Taylor, A. J.

Teperik, T. V.

Tian, Y.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tretyakov, S.

S. Tretyakov, A. Urbas, and N. Zheludev, “The century of metamaterials,” J. Opt. 19(8), 080404 (2017).
[Crossref]

Tuong, P. V.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Urbas, A.

S. Tretyakov, A. Urbas, and N. Zheludev, “The century of metamaterials,” J. Opt. 19(8), 080404 (2017).
[Crossref]

Vendik, I. B.

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58(1), 1–24 (2013).
[Crossref]

Vendik, O. G.

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58(1), 1–24 (2013).
[Crossref]

Vukadinovic, N.

Wang, B.-X.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
[Crossref] [PubMed]

Wang, C.

Wang, M.

Wang, Y.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Wang, Z.

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, G.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Weng, X.

Werner, D. H.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Wu, J.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Xie, J.

Xie, Q.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
[Crossref] [PubMed]

Yang, H.-L.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Yang, L.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Yu, P.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zhang, B.

Zhang, N.

Zhang, X.

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Zhao, J.

Zhao, Z.

Zheludev, N.

S. Tretyakov, A. Urbas, and N. Zheludev, “The century of metamaterials,” J. Opt. 19(8), 080404 (2017).
[Crossref]

Zhiming, W.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Zhiqin, Z.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Zhou, P.

Zhu, W.

Ziyuan, L.

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

ACS Nano (3)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Appl. Phys. A. (1)

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A. 109(4), 769–773 (2012).
[Crossref]

Appl. Phys. Lett. (2)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

J. Appl. Phys. (3)

S. Gu, J. Barrett, T. Hand, B.-I. Popa, and S. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, and C. Lee, “Dual band complementary metamaterial absorber in near infrared region,” J. Appl. Phys. 115(19), 193109 (2014).
[Crossref]

J. Opt. (1)

S. Tretyakov, A. Urbas, and N. Zheludev, “The century of metamaterials,” J. Opt. 19(8), 080404 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

J. Phys. D Appl. Phys. (2)

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Y. Peng, Z. Fanlu, L. Ziyuan, Z. Zhiqin, G. Alexander, F. Lan, T. Hoe, J. Chennupati, and W. Zhiming, “Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles,” J. Phys. D Appl. Phys. 51(29), 295106 (2018).
[Crossref]

Nano Lett. (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

X.-T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Nanoscale Res. Lett. (1)

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett. 13(1), 137 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

B. T. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng. 52(1), 013801 (2013).
[Crossref]

Opt. Express (7)

A. Sellier, T. V. Teperik, and A. de Lustrac, “Resonant circuit model for efficient metamaterial absorber,” Opt. Express 21(S6), A997–A1006 (2013).
[Crossref] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

J.-B. Brückner, J. Le Rouzo, L. Escoubas, G. Berginc, O. Calvo-Perez, N. Vukadinovic, and F. Flory, “Metamaterial filters at optical-infrared frequencies,” Opt. Express 21(14), 16992–17006 (2013).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (2)

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res. 113, 103–110 (2011).
[Crossref]

Tech. Phys. (1)

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58(1), 1–24 (2013).
[Crossref]

Other (2)

P. Kung and S. Kim, “Terahertz metamaterial absorbers for sensing and imaging,” in Proceedings of Progress in Electromagnetics Research Symposium, 2013), 232–235.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Geometry of the MMPA structure: (a) 3D schematic view; (b) Top view; (c) Side view. SEM image with fake color of periodically patterned array (d) and single unit cell (e). The periodic ax = ay = 2 μm. The thickness of the resonator is 50 nm and the bottom of the blocking gold film is fixed at 150 nm separated by Ge with td = 120 nm. The scale bars in (d) and (e) are 2 μm and 500 nm, respectively.
Fig. 2
Fig. 2 Typical energy dissipation (logarithmic scale) in the MMPA at a wavelength of ~3500 nm: resonator (z = 295 nm), dielectric (z = 210 nm) and bottom gold film (z = 75 nm), respectively.
Fig. 3
Fig. 3 (a) Near-field intensity of MMPA (logarithmic scale); (b) Dependence of the maximum absorption and resonant wavelength with the Ge thickness td. The resonator size l is fixed at 1000 nm; (c) The absorption spectra of MMPA with increased size from 800 to 1200 nm with td = 120 nm; (d) Relationship of peak absorption and resonant wavelength with resonator size l.
Fig. 4
Fig. 4 (a) Schematic charge distribution in TM mode: square resonator (left), MSIHS (right); RLC equivalent circuit of square resonator MMPA (b) and MSIHS resonator MMPA (c); (d) Simulated charge density distribution (logarithmic scale) of MSIHS resonator MMPA at a wavelength of ~3500 nm.
Fig. 5
Fig. 5 (a) Simulated and experimental directional absorptance of MMPA as a function of θ at λ = ~3500 nm. td = 120 nm; l = 1000 nm. (b) Simulated (solid lines) and experimental (dashed lines) absorption of MMPAs with different values of l (left to right: 800, 900, 1000, 1100, 1200 nm).
Fig. 6
Fig. 6 Simulated absorption spectra of MSIHS with l changes from 500 to 1600 nm (∆=100 nm).
Fig.7
Fig.7 Simulated absorption spectra of square resonator with l changes from 500 to 1600 nm (∆=100 nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P abs = 1 2 ωε'' | E | 2
Z 1 = R+jωL 1+jωRC ω 2 LC , Z 2 = R ' +jω L ' 4(1+jω R ' C ' ω 2 L ' C ' )
L= μ 0 N 2 d,R= ρd l 2 ,C= ε l 2 d
Z 1 = A jl +B, Z 2 = 2 A 4jl + B 16

Metrics