Abstract

In this paper, we present a Bayes’ theorem-based high-speed algorithm, to measure the binary transmission matrix of a multimode fiber using a digital micromirror device, in a reference-less multimode fiber imaging system. Based on conditional probability, we define a preset threshold to locate those digital-micromirror-device pixels that can be switched ‘ON’ to form a focused spot at the output. This leads to a binary transmission matrix consisting of ‘0’ and ‘1’ elements. High-enhancement-factor light focusing and raster-scanning at the distal end of the fiber are demonstrated experimentally. The key advantage of our algorithm is its capability for fast calibration of a MMF to form a tightly focused spot. In our experiment, for 5000 input-output pairs, we only need 0.26 s to calibrate one row of the transmission matrix to achieve a focused spot with an enhancement factor of 28. This is more than 10 times faster than the prVBEM algorithm. The proposed Bayes’ theorem-based binary algorithm can be applied not only in multimode optical fiber focusing but also to other disordered media. Particularly, it will be valuable in fast multimode fiber calibration for endoscopic imaging.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system

Liang Deng, Joseph D. Yan, Daniel S. Elson, and Lei Su
Opt. Express 26(14) 18436-18447 (2018)

High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing

Xiaodong Tao, Dare Bodington, Marc Reinig, and Joel Kubby
Opt. Express 23(11) 14168-14187 (2015)

Real-time resilient focusing through a bending multimode fiber

Antonio M. Caravaca-Aguirre, Eyal Niv, Donald B. Conkey, and Rafael Piestun
Opt. Express 21(10) 12881-12887 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber Optic Communication Systems, Third Edition (John Wiley & Sons Inc.m 2002).
  2. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  3. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
    [Crossref] [PubMed]
  4. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  5. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref] [PubMed]
  6. P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
    [Crossref] [PubMed]
  7. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
    [Crossref] [PubMed]
  8. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [Crossref] [PubMed]
  9. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  10. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  11. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref] [PubMed]
  12. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
    [Crossref] [PubMed]
  13. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  14. I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
    [Crossref]
  15. S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
    [Crossref] [PubMed]
  16. L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. S. J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41(3), 497–500 (2016).
    [Crossref] [PubMed]
  17. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  18. J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
    [Crossref] [PubMed]
  19. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  20. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
    [Crossref]
  21. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  22. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  23. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
    [Crossref]
  24. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref] [PubMed]
  25. S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
    [Crossref] [PubMed]
  26. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  27. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]
  28. X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).
    [Crossref] [PubMed]
  29. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
    [Crossref] [PubMed]
  30. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
    [Crossref] [PubMed]
  31. M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
    [Crossref] [PubMed]
  32. L. Deng, J. Yan, D. S. Elson, and L. Su, “Characterization of an imaging multimode optical fiber using digital micro-mirror device based single-beam system,” Opt. Express 26(6), 18436–18447 (2018)
  33. R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23(21), 26905–26918 (2015).
    [Crossref] [PubMed]
  34. H. Yu, K. Lee, and Y. Park, “Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes,” Opt. Express 25(7), 8036–8047 (2017).
    [Crossref] [PubMed]

2018 (2)

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

L. Deng, J. Yan, D. S. Elson, and L. Su, “Characterization of an imaging multimode optical fiber using digital micro-mirror device based single-beam system,” Opt. Express 26(6), 18436–18447 (2018)

2017 (4)

2016 (3)

2015 (9)

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref] [PubMed]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).
[Crossref] [PubMed]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref] [PubMed]

R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23(21), 26905–26918 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

2012 (6)

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

2007 (1)

Ahmed, G.

Akbulut, D.

Amitonova, L. V.

Andresen, E. R.

Babic, F.

Bertolotti, J.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Bodington, D.

Bossy, E.

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Bouwmans, G.

Brake, J.

Büttner, L.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Chung, E.

Cižmár, T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref] [PubMed]

Conkey, D. B.

Cossart, R.

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Czarske, J. W.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Daudet, L.

Deng, L.

Descloux, A.

Dholakia, K.

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Drémeau, A.

Elson, D. S.

Estakhri, N. M.

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Frosz, M. H.

Gigan, S.

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Goorden, S. A.

Goy, A.

Gu, R. Y.

Haufe, D.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Huisman, T. J.

Jang, M.

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. S. J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41(3), 497–500 (2016).
[Crossref] [PubMed]

Judkewitz, B.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Kahn, J. M.

Katz, O.

Kim, D.

Kim, J.

Kim, M.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Koukourakis, N.

Krzakala, F.

Kubby, J.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Lai, P.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Lee, K.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Leite, I. T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Lien, M. B.

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Liutkus, A.

Loterie, D.

Mahalati, R. N.

Martina, D.

Michielssen, E.

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Mitchell, K. J.

Monneret, S.

Moon, J.

Morales-Delgado, E. E.

Moser, C.

Mosk, A. P.

N’Gom, M.

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Nadakuditi, R. R.

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Norris, T. B.

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Padgett, M. J.

Papadopoulos, I.

Papadopoulos, I. N.

Park, Y.

Petschulat, J.

Phillips, D. B.

Pierre Huignard, J.

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Piestun, R.

Pinkse, P. W. H.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Psaltis, D.

Reinig, M.

Rigneault, H.

Ruan, H.

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Russell, P. S. J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. S. J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41(3), 497–500 (2016).
[Crossref] [PubMed]

Schülke, C.

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Simandoux, O.

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Sivankutty, S.

Su, L.

Tao, X.

Tay, J. W.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref] [PubMed]

van Putten, E. G.

Vellekoop, I. M.

Vos, W. L.

Wang, D.

Wang, L.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Wang, L. V.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Yan, J.

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yu, H.

Zhou, E. H.

Appl. Phys. Lett. (1)

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Nat. Commun. (3)

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Nat. Photonics (4)

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Opt. Commun. (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Opt. Express (17)

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref] [PubMed]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).
[Crossref] [PubMed]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref] [PubMed]

R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23(21), 26905–26918 (2015).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
[Crossref] [PubMed]

J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
[Crossref] [PubMed]

H. Yu, K. Lee, and Y. Park, “Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes,” Opt. Express 25(7), 8036–8047 (2017).
[Crossref] [PubMed]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref] [PubMed]

L. Deng, J. Yan, D. S. Elson, and L. Su, “Characterization of an imaging multimode optical fiber using digital micro-mirror device based single-beam system,” Opt. Express 26(6), 18436–18447 (2018)

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

M. N’Gom, M. B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method,” Sci. Rep. 7(1), 2518 (2017).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Fiber Optic Communication Systems, Third Edition (John Wiley & Sons Inc.m 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic explanation of the binary amplitude modulation by DMD for light focusing through a disordered medium. Complex TM elements of the disordered medium are shown as vectors in the complex plane. Red vectors refer to elements with positive real parts while black vectors refer to negative real parts. Green vectors refer to the superposition of complex numbers. (a) When all DMD pixels are turned ‘ON’ (indicated by 1), all TM elements in the corresponding row are ‘activated’ and superpose at the output position. (b) When turning ‘OFF’ DMD pixels corresponding to black vectors (marked by 0), only red vectors superpose at the target position, resulting in constructive interference, and shown as a focusing spot on the camera.
Fig. 2
Fig. 2 Experimental setup of the reference-less MMF characterization. L1, L2: Bi-Convex Lenses; DMD: Digital Micromirror Device; TL1, TL2: Tube Lens; OL1: 40X Objective Lens; OL2: 20X Objective Lens; MMF: Multimode Fiber.
Fig. 3
Fig. 3 Examples of light focusing through the MMF using the binary TM algorithm at (a) the 2328th, (b) 4632th, (c) 6936th, (e) 2352th, (f) 4656th, (g) 6960th, (i) 2376th, (j) 4680th and (k) 6984th output camera pixels. (d), (h) and (l) are the simulated focused spots at the same positions as (c), (g) and (k). The number of input-output measurements K = 20000. The colorbar for experimental results spans the camera pixel output intensity values; the colorbar for simulation results spans arbitrary intensity values calculated using Eq. (1).
Fig. 4
Fig. 4 Boxplots (100 randomly chosen output pixels and K = 5000) of (a) the enhancement-factor distribution as a function of different intensity thresholds Hm. The median values of boxes are 43.7, 46.8, 54.0, 54.3 and 51.4 from left to right and (b) the enhancement-factor distribution at different probability thresholds. The median values of the boxes are 52.1, 54.0, 54.3, 54.0, 52.2, 45.5 and 36.2 from left to right. (c) The enhancement factor as a function of K. The median values of boxes are 54.3, 69.2, 77.0, 84.4, 88.4, 92.3 and 96.7 from left to right. (d) Comparison on the average computing time between our binary algorithm and prvBEM at various K values.
Fig. 5
Fig. 5 The light focusing at two different locations using the Bayes’ theorem-based binary algorithm. (a) Experimental captured image. (b) Simulation result of focusing at two different position.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E m = i=1 N t mn E n
P(B|A)= P(A|B) P(A) = P(A|B) P(A|B)+P(A| B c )
P (C|T) mn = P (T|C) mn ×P (C) m P (T|C) mn ×P (C) m +P (T|D) mn ×P (D) m
P (D|T) mn = P (T|D) mn ×P (D) m P (T|D) mn ×P (D) m +P (T|C) mn ×P (C) m
η= I foc I back

Metrics