Abstract

We demonstrated a 2D/3D switchable mobile display using a polarization-dependent switching liquid crystalline polymeric (LCP) lens array film. In spite of short viewing distance and enough viewing window conditions provided by a small f-number lens for mobile displays, the 3D images when switched to the multi-view 3D mode showed a low crosstalk property owing to the improved lens aberration, as applying an aspherical lens curvature interface between the planar-convex LCP layer and the concave-planar isotropic polymer layer. Both 2D and 3D images were demonstrated based on a 5.5-inch quad high definition mobile display panel, where the binocular crosstalk of the 3D mode was 3.3%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array

Kun Li, Ali Özgür Yöntem, Yuanbo Deng, Pawan Shrestha, Daping Chu, Jiong Zhou, and Jun Yao
Opt. Express 25(9) 9654-9675 (2017)

High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display

Yu-Cheng Chang, Tai-Hsiang Jen, Chih-Hung Ting, and Yi-Pai Huang
Opt. Express 22(3) 2714-2724 (2014)

Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk

Ruidong Zhu, Su Xu, Qi Hong, Shin-Tson Wu, Chiayu Lee, Chih-Ming Yang, Chang-Cheng Lo, and Alan Lien
Appl. Opt. 53(7) 1388-1395 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
    [Crossref]
  2. H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
    [Crossref]
  3. H. Im, S. Jung, B. Lee, H. Hong, and H. Shin, “20.1: Mobile 3D displays based on a LTPS 2.4” VGA LCD panel attached with lenticular lens sheets,” in SID Symposium Digest Technical Papers (SID, 2008) pp. 256–259.
  4. M.-C. Park, S. J. Park, and J.-Y. Son, “Stereoscopic imaging and display for a 3-D mobile phone,” Appl. Opt. 48(34), H238–H243 (2009).
    [Crossref] [PubMed]
  5. Y. Takaki, “Multi-view 3-D display employing a flat-panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010).
    [Crossref]
  6. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  7. C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphepö, C.-T. Hsieh, and S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48(18), 3446–3454 (2009).
    [Crossref] [PubMed]
  8. S.-U. Kim, J. Kim, J.-H. Suh, J.-H. Na, and S.-D. Lee, “Concept of active parallax barrier on polarizing interlayer for near-viewing autostereoscopic displays,” Opt. Express 24(22), 25010–25018 (2016).
    [Crossref] [PubMed]
  9. O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
    [Crossref]
  10. G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006).
    [Crossref]
  11. M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “20.1: Locally switchable 3D displays,” in SID Symposium Digest Technical Papers (SID, 2006) pp. 1142–1145.
  12. G. J. Woodgate and J. Harrold, “Efficiency analysis for multi‐view spatially multiplexed autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007).
    [Crossref]
  13. H. Hong, S. Jung, B. Lee, and H. Shin, “Electric‐field‐driven LC lens for 3‐D/2‐D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
    [Crossref]
  14. Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [Crossref]
  15. R. Zhu, S. Xu, Q. Hong, S.-T. Wu, C. Lee, C.-M. Yang, C.-C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]
  16. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  17. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  18. Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  19. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref] [PubMed]
  20. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  21. H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [Crossref] [PubMed]
  22. Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  23. J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [Crossref] [PubMed]
  24. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
    [Crossref] [PubMed]
  25. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
    [Crossref] [PubMed]
  26. G. J. Woodgate and J. Harrold, “LP‐1: Late‐News Poster: High Efficiency Reconfigurable 2D/3D Autostereoscopic Display,” in SID Symposium Digest Technical Papers (SID, 2003) pp. 394–397.
    [Crossref]
  27. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
    [Crossref]
  28. H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  29. H.-S. Chen, Y.-H. Lin, A. K. Srivastava, V. G. Chigrinov, C.-M. Chang, and Y.-J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
    [Crossref] [PubMed]
  30. K.-B. Son, M. Kim, M.-K. Park, and H.-R. Kim, “Polarization-dependent microlens array using reactive mesogen aligned by top-down nanogrooves for switchable three-dimensional applications,” J. Opt. Soc. Korea 19(3), 265–271 (2015).
    [Crossref]
  31. Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
    [Crossref]
  32. L. Shi, A. K. Srivastava, A. M. Wai Tam, V. G. Chigrinov, and H. S. Kwok, “2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal,” Opt. Lett. 42(17), 3435–3438 (2017).
    [Crossref] [PubMed]
  33. K.-C. Kwon, M.-U. Erdenebat, Y.-T. Lim, K.-I. Joo, M.-K. Park, H. Park, J.-R. Jeong, H.-R. Kim, and N. Kim, “Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array,” Opt. Express 25(24), 30503–30512 (2017).
    [Crossref] [PubMed]
  34. W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986), pp. 226–236.
  35. J. C. Wyant, Basic Wavefront Aberration Theory for Optical Metrology (CRC Press, 2003), pp. 234–316.
  36. S. P. Yadav, H. Shaikh, and R. S. Pawade, “Assessment of optical performance of aspheric germanium lens manufactured using single point diamond turning,” in Proc. ASME Int. Manuf. Sci. Eng. Conf. (ASME, 2017) p. MSEC2017–2691.
    [Crossref]
  37. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  38. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [Crossref] [PubMed]

2017 (4)

2016 (1)

2015 (1)

2014 (3)

2013 (1)

2012 (2)

2011 (3)

2010 (4)

Y. Takaki, “Multi-view 3-D display employing a flat-panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010).
[Crossref]

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
[Crossref]

Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[Crossref]

2007 (3)

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

G. J. Woodgate and J. Harrold, “Efficiency analysis for multi‐view spatially multiplexed autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007).
[Crossref]

2006 (3)

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
[Crossref]

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006).
[Crossref]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

2004 (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

2003 (1)

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Algorri, J. F.

Ando, H.

Bahn, J.-E.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Bennis, N.

Chang, C.-M.

Chang, Y.-C.

Chen, C.-H.

Chen, C.-W.

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Chen, H. S.

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, H.-S.

Chigrinov, V. G.

Choi, H.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Choi, Y.

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[Crossref] [PubMed]

Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[Crossref]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Choi, Y.-J.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Chuang, S.-C.

De Zwart, S. T.

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
[Crossref]

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “20.1: Locally switchable 3D displays,” in SID Symposium Digest Technical Papers (SID, 2006) pp. 1142–1145.

Dekker, T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “20.1: Locally switchable 3D displays,” in SID Symposium Digest Technical Papers (SID, 2006) pp. 1142–1145.

Erdenebat, M.-U.

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Fox, D. W.

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Harrold, J.

G. J. Woodgate and J. Harrold, “Efficiency analysis for multi‐view spatially multiplexed autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007).
[Crossref]

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006).
[Crossref]

G. J. Woodgate and J. Harrold, “LP‐1: Late‐News Poster: High Efficiency Reconfigurable 2D/3D Autostereoscopic Display,” in SID Symposium Digest Technical Papers (SID, 2003) pp. 394–397.
[Crossref]

Hiddink, M. G. H.

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
[Crossref]

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “20.1: Locally switchable 3D displays,” in SID Symposium Digest Technical Papers (SID, 2006) pp. 1142–1145.

Hong, H.

H. Hong, S. Jung, B. Lee, and H. Shin, “Electric‐field‐driven LC lens for 3‐D/2‐D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Hong, H. K.

H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
[Crossref]

Hong, Q.

Hsieh, C.-T.

Hsu, H.-K.

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Hsu, S.-C.

Huang, Y.-P.

Jen, T.-H.

Jeong, J.-R.

Joo, K.-I.

Jung, S.

H. Hong, S. Jung, B. Lee, and H. Shin, “Electric‐field‐driven LC lens for 3‐D/2‐D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Kashiwada, S.

Kim, H.-R.

Kim, J.

Kim, J.-H.

Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[Crossref]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Kim, M.

Kim, N.

Kim, S.-K.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Kim, S.-U.

Kwok, H. S.

Kwon, K.-C.

Lee, B.

H. Hong, S. Jung, B. Lee, and H. Shin, “Electric‐field‐driven LC lens for 3‐D/2‐D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Lee, C.

Lee, K.-H.

Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[Crossref]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Lee, S.

H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
[Crossref]

Lee, S.-D.

Lee, Y.-M.

Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[Crossref]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Li, W.-Y.

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, Y.

Liao, L.-Y.

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Lien, A.

Lim, Y.-T.

Lin, H.-C.

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y.-H.

Liu, Y.

Lo, C.-C.

Morawiak, P.

Mphepö, W.

Na, J.-H.

Nago, N.

Nakamura, J.

Nakamura, K.

Otón, J. M.

Park, H.

Park, J.

H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
[Crossref]

Park, M.-C.

Park, M.-K.

Park, S. C.

Park, S. J.

Ren, H.

Sánchez-Pena, J. M.

Saveljev, V. V.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Shi, L.

Shieh, H.-P. D.

Shin, H.

H. Hong, S. Jung, B. Lee, and H. Shin, “Electric‐field‐driven LC lens for 3‐D/2‐D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
[Crossref]

Son, J.-Y.

M.-C. Park, S. J. Park, and J.-Y. Son, “Stereoscopic imaging and display for a 3-D mobile phone,” Appl. Opt. 48(34), H238–H243 (2009).
[Crossref] [PubMed]

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Son, K.-B.

Srivastava, A. K.

Suh, J.-H.

Takaki, Y.

Tanaka, K.

Ting, C.-H.

Tsou, Y.-S.

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Urano, Y.

Urruchi, V.

Wai Tam, A. M.

Wang, Y.-J.

Willemsen, O.

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
[Crossref]

Willemsen, O. H.

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
[Crossref]

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “20.1: Locally switchable 3D displays,” in SID Symposium Digest Technical Papers (SID, 2006) pp. 1142–1145.

Woodgate, G. J.

G. J. Woodgate and J. Harrold, “Efficiency analysis for multi‐view spatially multiplexed autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007).
[Crossref]

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006).
[Crossref]

G. J. Woodgate and J. Harrold, “LP‐1: Late‐News Poster: High Efficiency Reconfigurable 2D/3D Autostereoscopic Display,” in SID Symposium Digest Technical Papers (SID, 2003) pp. 394–397.
[Crossref]

Wu, B.

Wu, C.-L.

Wu, S.-T.

Xu, S.

Yang, C.-M.

Zhu, R.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Y.-H. Lin, H. S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Displays (1)

H. K. Hong, J. Park, S. Lee, and H. Shin, “Autostereoscopic multi-view 3D display with pivot function, using the image display of the square subpixel structure,” Displays 29(5), 512–520 (2008).
[Crossref]

J. Opt. Soc. Korea (1)

J. Soc. Inf. Disp. (6)

G. J. Woodgate and J. Harrold, “Efficiency analysis for multi‐view spatially multiplexed autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007).
[Crossref]

H. Hong, S. Jung, B. Lee, and H. Shin, “Electric‐field‐driven LC lens for 3‐D/2‐D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Y. Takaki, “Multi-view 3-D display employing a flat-panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010).
[Crossref]

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2‐D/3‐D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006).
[Crossref]

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2‐D/3‐D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[Crossref]

Opt. Eng. (1)

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. 42(11), 3326–3333 (2003).
[Crossref]

Opt. Express (15)

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

H.-S. Chen, Y.-H. Lin, A. K. Srivastava, V. G. Chigrinov, C.-M. Chang, and Y.-J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

K.-C. Kwon, M.-U. Erdenebat, Y.-T. Lim, K.-I. Joo, M.-K. Park, H. Park, J.-R. Jeong, H.-R. Kim, and N. Kim, “Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array,” Opt. Express 25(24), 30503–30512 (2017).
[Crossref] [PubMed]

S.-U. Kim, J. Kim, J.-H. Suh, J.-H. Na, and S.-D. Lee, “Concept of active parallax barrier on polarizing interlayer for near-viewing autostereoscopic displays,” Opt. Express 24(22), 25010–25018 (2016).
[Crossref] [PubMed]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (6)

W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986), pp. 226–236.

J. C. Wyant, Basic Wavefront Aberration Theory for Optical Metrology (CRC Press, 2003), pp. 234–316.

S. P. Yadav, H. Shaikh, and R. S. Pawade, “Assessment of optical performance of aspheric germanium lens manufactured using single point diamond turning,” in Proc. ASME Int. Manuf. Sci. Eng. Conf. (ASME, 2017) p. MSEC2017–2691.
[Crossref]

G. J. Woodgate and J. Harrold, “LP‐1: Late‐News Poster: High Efficiency Reconfigurable 2D/3D Autostereoscopic Display,” in SID Symposium Digest Technical Papers (SID, 2003) pp. 394–397.
[Crossref]

H. Im, S. Jung, B. Lee, H. Hong, and H. Shin, “20.1: Mobile 3D displays based on a LTPS 2.4” VGA LCD panel attached with lenticular lens sheets,” in SID Symposium Digest Technical Papers (SID, 2008) pp. 256–259.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “20.1: Locally switchable 3D displays,” in SID Symposium Digest Technical Papers (SID, 2006) pp. 1142–1145.

Supplementary Material (1)

NameDescription
» Visualization 1       The visualization shows the 3D and 2D images at different oblique view directions while displaying the 3D and 2D content on the LCD panel.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Structure and operating principle of the polarization-dependent LCP GRIN lens array with the polarization switching layer, where (a) is the defocusing state for the 2D mode by the field-off condition of the polarization switching layer and (b) is the focusing state for the 3D mode by the field-on condition of the polarization switching layer.
Fig. 2
Fig. 2 Illustrations of longitudinal and transverse spherical aberrations for (a) passive-type planar-convex lens and (b) active-switching-type LCP GRIN lens with flat air interfaces.
Fig. 3
Fig. 3 Transverse spherical aberrations of the planar-convex lens (Bi) and the switchable LCP GRIN lens (Ai) according to f-number and pitch of the lenticular microlens arrays. The elemental lens conditions of the f-number, pitch, and focal length are co-presented in the table.
Fig. 4
Fig. 4 Simulation results of ray distributions and positional flux densities for the LCP lenses (f-number = 3.8, flens = 556 μm for both lens types) with (a) spherical and (b) aspherical curvature interfaces between the LCP and isotropic polymer layers. (c) Interfacial curvature profiles applied to the LCP lenses shown in Figs. 4(a) and 4(b).
Fig. 5
Fig. 5 Schematic diagrams of the fabrication procedures for the polarization-dependent switching LCP lens array: (a) UV nano-imprinting process to form the planar-concave isotropic polymer layer, made of UV-curable resin, (b) UVO surface pre-treatment on the replica-molded planar-concave isotropic polymer layer and spin-coating and curing of the LC alignment layer, and rubbing process on it for the bottom-up alignment of RM, (c) preparation of the top substrate by spin-coating and curing of the LC alignment layer and rubbing treatment on it for the top-down alignment of the RM layer, (d) one-drop filling process of the RM solution, lamination of the top substrate, UV curing for polymerization of the RM layer, and the final structure of the polarization-dependent LCP lens array after peel-off of the top substrate, (e) lamination process for integration of the polarization-dependent LCP lens array film on the polarization-switching TN LC cell by using UV curable adhesive material.
Fig. 6
Fig. 6 (a) Cross-sectional scanning electron microscopic image of the LCP lens array. (b) and (c) Polarizing optical microscope (POM) images of the LCP lens, prepared with the top-down and bottom-up alignment methods. (d) POM image of the LCP lens, prepared only with the bottom-up alignment method without applying the top-down alignment method. (e) Measured and ideal relative phase delay profiles of the LCP lens for the incident polarization condition of the focusing state, where the measured ones are obtained from the dark and bright fringe patterns shown in Fig. 6(c).
Fig. 7
Fig. 7 Microscope images of the (a) defocused and (b) focused beams obtained at the focal plane, showing the switchable focusing behaviors of the polarization-dependent LCP lens array according to the switching states ((a) field-off and (b) field-on states, respectively) of the polarization switching layer. (c) Time-dependent focused beam intensity of the polarization-dependent LCP lens array as switching it from the defocusing to focusing state and from the focusing to defocusing state by changing the applied voltage condition of the polarization-switching TN LC layer. (d) MTF curve of the polarization-dependent switching LCP lens at the focusing mode, characterized by using the 1951 USAF resolution test chart.
Fig. 8
Fig. 8 Cross-sectional schematic of the polarization-dependent LCP lens array assembled on the QHD (538 ppi) mobile panel for the 2D/3D switchable display.
Fig. 9
Fig. 9 Angular luminance distributions of the autostereoscopic multi-view (10-view) 3D mode of the 2D/3D switchable mobile display: (a) the simulation result, (b-c) the experimentally measured results at (b) the 3D mode and (c) the 2D mode.
Fig. 10
Fig. 10 Photograph of visual images captured from the 2D/3D switchable mobile display: (a) the original 2D content image, (b) the 3D content image after the sub-pixel rearrangement for the autostereoscopic 10-view 3D, (c) display image of the 2D content observed at the 3D mode, (d) display image of the 2D content observed at the 2D mode, (e) directional view images of the 3D content observed at the 3D mode. (Visualization 1: the moving picture of the 2D/3D switching images).

Tables (1)

Tables Icon

Table 1 Specifications of the 2D/3D switchable mobile multi-view display.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f=π r 2 /φλ,
EF(%)= j ( Γ j m Γ j i ) 2 2r ×100,
C i (%)= ( j I i,j ) I i,i j I i,j ×100,

Metrics