Abstract

The enhanced-generation of entanglement between one atomic collective excitation and a single photon (atom-photon) is very important for practical quantum repeaters and quantum networks based on atomic ensembles and linear optics. We present a feedback-loop algorithm based on field programmable gate array (FPGA) to obtain 21.6-fold increase of the generation rate of atom-photon entanglement at the storage time of 51 μs comparing with no feedback protocol. The generation rate of the atom-photon entanglement is ~3190/s (2100/s) for the excitation probability of 1.65% at the storage time of 1 μs (51 μs). The Bell parameter and the fidelity of atom-photon entanglement at the storage time of 1 μs are 2.40 ± 0.02 and 85.5% ± 0.6%, respectively. The detailed FPGA-based feedback-loop algorithm can be flexibly extended to the multiplexing of atom-photon entanglement, which is expected to further increase the generation rate of atom-photon entanglement.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-color hyper-entangled photon pairs generation in a cold 85Rb atomic ensemble

Ming-Xin Dong, Wei Zhang, Shuai Shi, Kai Wang, Zhi-Yuan Zhou, Shi-Long Liu, Dong-Sheng Ding, and Bao-Sen Shi
Opt. Express 25(9) 10145-10152 (2017)

Reversible storage of photon entanglement in thermal atomic ensembles

Tianhui Qiu, Guojian Yang, and Min Xie
J. Opt. Soc. Am. B 30(3) 687-690 (2013)

Coherent generation and manipulation of entangled stationary photons based on a multiple degrees of freedom quantum memory

T. H. Qiu, H. Li, M. Xie, Q. Liu, and H. Y. Ma
Opt. Express 27(20) 27477-27487 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  2. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
    [Crossref]
  3. Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
    [Crossref] [PubMed]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  5. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
    [Crossref] [PubMed]
  6. H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
    [Crossref]
  7. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [Crossref]
  8. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  9. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
    [Crossref]
  10. F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
    [Crossref]
  11. D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
    [Crossref] [PubMed]
  12. D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
    [Crossref] [PubMed]
  13. H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
    [Crossref] [PubMed]
  14. S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
    [Crossref] [PubMed]
  15. S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
    [Crossref] [PubMed]
  16. M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
    [Crossref]
  17. P. Farrera, G. Heinze, and H. de Riedmatten, “Entanglement between a photonic time-bin qubit and a collective atomic spin excitation,” Phys. Rev. Lett. 120(10), 100501 (2018).
    [Crossref] [PubMed]
  18. R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
    [Crossref] [PubMed]
  19. C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
    [Crossref]
  20. C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
    [Crossref] [PubMed]
  21. O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
    [Crossref] [PubMed]
  22. S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
    [Crossref] [PubMed]
  23. M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80(3), 032301 (2009).
    [Crossref]
  24. R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-capacity angularly multiplexed holographic memory operating at the single-photon level,” Phys. Rev. Lett. 118(6), 063603 (2017).
    [Crossref] [PubMed]
  25. Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
    [Crossref] [PubMed]
  26. M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
    [Crossref] [PubMed]
  27. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
    [Crossref] [PubMed]
  28. P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
    [Crossref]
  29. M. Bonarota, J. L. Le Gouët, and T. Chaneliere, “Highly multimode storage in a crystal,” New J. Phys. 13(1), 013013 (2011).
    [Crossref]
  30. D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
    [Crossref] [PubMed]
  31. S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
    [Crossref] [PubMed]
  32. Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
    [Crossref] [PubMed]
  33. X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
    [Crossref]
  34. L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
    [Crossref] [PubMed]
  35. M. Mazelanik, M. Dąbrowski, and W. Wasilewski, “Correlation steering in the angularly multimode Raman atomic memory,” Opt. Express 24(19), 21995–22003 (2016).
    [Crossref] [PubMed]
  36. Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
    [Crossref]
  37. B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
    [Crossref]
  38. S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
    [Crossref]
  39. Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
    [Crossref] [PubMed]
  40. J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
    [Crossref] [PubMed]
  41. M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
    [Crossref] [PubMed]
  42. X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
    [Crossref]
  43. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
    [Crossref]
  44. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
    [Crossref]

2018 (2)

P. Farrera, G. Heinze, and H. de Riedmatten, “Entanglement between a photonic time-bin qubit and a collective atomic spin excitation,” Phys. Rev. Lett. 120(10), 100501 (2018).
[Crossref] [PubMed]

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

2017 (5)

M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
[Crossref]

R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-capacity angularly multiplexed holographic memory operating at the single-photon level,” Phys. Rev. Lett. 118(6), 063603 (2017).
[Crossref] [PubMed]

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

2016 (5)

M. Mazelanik, M. Dąbrowski, and W. Wasilewski, “Correlation steering in the angularly multimode Raman atomic memory,” Opt. Express 24(19), 21995–22003 (2016).
[Crossref] [PubMed]

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

2015 (2)

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

2014 (1)

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref] [PubMed]

2012 (1)

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

2011 (5)

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

M. Bonarota, J. L. Le Gouët, and T. Chaneliere, “Highly multimode storage in a crystal,” New J. Phys. 13(1), 013013 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

2009 (3)

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
[Crossref] [PubMed]

M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80(3), 032301 (2009).
[Crossref]

2008 (1)

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

2007 (3)

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

2006 (5)

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

2005 (2)

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[Crossref]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2001 (2)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

1999 (2)

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Afzelius, M.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

Albota, M. A.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[Crossref]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Bao, X. H.

S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Bhattacharya, M.

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Bonarota, M.

M. Bonarota, J. L. Le Gouët, and T. Chaneliere, “Highly multimode storage in a crystal,” New J. Phys. 13(1), 013013 (2011).
[Crossref]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Bussières, F.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

Chae, C. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Chaneliere, T.

M. Bonarota, J. L. Le Gouët, and T. Chaneliere, “Highly multimode storage in a crystal,” New J. Phys. 13(1), 013013 (2011).
[Crossref]

Chanelière, T.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Chang, W.

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

Chen, L.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Chen, L. R.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Chen, S.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Chen, Y. A.

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Chen, Z. B.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Choi, D. Y.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Chou, C. W.

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

Chrapkiewicz, R.

R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-capacity angularly multiplexed holographic memory operating at the single-photon level,” Phys. Rev. Lett. 118(6), 063603 (2017).
[Crossref] [PubMed]

Chuu, C. S.

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Clausen, C.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

Collins, M. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Collins, O. A.

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Dabrowski, M.

R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-capacity angularly multiplexed holographic memory operating at the single-photon level,” Phys. Rev. Lett. 118(6), 063603 (2017).
[Crossref] [PubMed]

M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
[Crossref]

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

M. Mazelanik, M. Dąbrowski, and W. Wasilewski, “Correlation steering in the angularly multimode Raman atomic memory,” Opt. Express 24(19), 21995–22003 (2016).
[Crossref] [PubMed]

Dai, H. N.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

de Riedmatten, H.

P. Farrera, G. Heinze, and H. de Riedmatten, “Entanglement between a photonic time-bin qubit and a collective atomic spin excitation,” Phys. Rev. Lett. 120(10), 100501 (2018).
[Crossref] [PubMed]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

Deng, Y.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Dietrich, P.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Duan, L. M.

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Dück, A.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Eberhard, P. H.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Eggleton, B. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Etesse, J.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

Farrera, P.

P. Farrera, G. Heinze, and H. de Riedmatten, “Entanglement between a photonic time-bin qubit and a collective atomic spin excitation,” Phys. Rev. Lett. 120(10), 100501 (2018).
[Crossref] [PubMed]

Felinto, D.

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

Ferrier, A.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

Ge, W.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

George, M.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Gisin, N.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Goldner, P.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

He, Y.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Hedges, M. P.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Heinze, G.

P. Farrera, G. Heinze, and H. de Riedmatten, “Entanglement between a photonic time-bin qubit and a collective atomic spin excitation,” Phys. Rev. Lett. 120(10), 100501 (2018).
[Crossref] [PubMed]

Helt, L. G.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Ikuta, R.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Imoto, N.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Jenkins, S. D.

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Jennewein, T.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Jiang, N.

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

Jiang, X.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Jin, X. M.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Jobez, P.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

Kawakami, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Kennedy, T. A.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Kennedy, T. A. B.

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

Kimble, H. J.

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

Koashi, M.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Kobayashi, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Koch, M.

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

Kofler, J.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

König, F.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[Crossref]

Kröll, S.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref] [PubMed]

Kuzmich, A.

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Lan, S. Y.

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Laplane, C.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

Laurat, J.

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

Le Gouët, J. L.

M. Bonarota, J. L. Le Gouët, and T. Chaneliere, “Highly multimode storage in a crystal,” New J. Phys. 13(1), 013013 (2011).
[Crossref]

Leong, P. H. W.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Leszczynski, A.

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

Li, C.

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

Li, J.

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

Li, L.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Li, Q.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref] [PubMed]

Li, S.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Li, S. J.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Lipka, M.

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

Liu, N. L.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Liu, Z.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Lütkenhaus, N.

M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80(3), 032301 (2009).
[Crossref]

Ma, X. S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Mahendra, A.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Mallahzadeh, H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Mason, E. J.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[Crossref]

Matsukevich, D. N.

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Mazelanik, M.

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

M. Mazelanik, M. Dąbrowski, and W. Wasilewski, “Correlation steering in the angularly multimode Raman atomic memory,” Opt. Express 24(19), 21995–22003 (2016).
[Crossref] [PubMed]

Miki, S.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Mukai, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

Oblak, D.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Pan, G. S.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Pan, J. W.

S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Parniak, M.

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
[Crossref]

Peng, K.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Peng, K. C.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Piani, M.

M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80(3), 032301 (2009).
[Crossref]

Pu, Y. F.

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

Radnaev, A. G.

Razavi, M.

M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80(3), 032301 (2009).
[Crossref]

Reingruber, A.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Ricken, R.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Rippe, L.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref] [PubMed]

Rui, J.

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Sabooni, M.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref] [PubMed]

Saglamyurek, E.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Schmiedmayer, J.

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Schomburg, E. W.

J. Laurat, H. de Riedmatten, D. Felinto, C. W. Chou, E. W. Schomburg, and H. J. Kimble, “Efficient retrieval of a single excitation stored in an atomic ensemble,” Opt. Express 14(15), 6912–6918 (2006).
[Crossref] [PubMed]

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Simon, C.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Sinclair, N.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Slater, J. A.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Sohler, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Steel, M. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Strassel, T.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Terai, H.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Tian, L.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Timoney, N.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

Tittel, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Usmani, I.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Wang, H.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Wang, S.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Wang, X. J.

S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

Wasilewski, W.

M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
[Crossref]

R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-capacity angularly multiplexed holographic memory operating at the single-photon level,” Phys. Rev. Lett. 118(6), 063603 (2017).
[Crossref] [PubMed]

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

M. Mazelanik, M. Dąbrowski, and W. Wasilewski, “Correlation steering in the angularly multimode Raman atomic memory,” Opt. Express 24(19), 21995–22003 (2016).
[Crossref] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Wen, Y.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Wen, Y. F.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Wong, F. N. C.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[Crossref]

Wu, Y.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Wu, Y. L.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Xie, C.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Xie, C. D.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Xiong, C.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Xu, Z.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Xu, Z. X.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Yabuno, M.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Yamamoto, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Yamashita, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Yan, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Yang, F.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Yang, H. X.

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

Yang, J.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Yang, S. J.

S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Yuan, H.

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Yuan, H. X.

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

Yuan, Z. S.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zeilinger, A.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Zhang, X.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Zhang, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Zhao, B.

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Zhao, T. M.

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Zhao, Y.

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

Zhu, G. J.

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Zotter, S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Nat. Commun. (4)

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7(1), 10853 (2016).
[Crossref] [PubMed]

Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M. Duan, “Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells,” Nat. Commun. 8(1), 15359 (2017).
[Crossref] [PubMed]

M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, “Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection,” Nat. Commun. 8(1), 2140 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

S. J. Yang, X. J. Wang, X. H. Bao, and J. W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

H. Zhang, X. M. Jin, J. Yang, H. N. Dai, S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Nat. Phys. (2)

X. H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N. L. Liu, B. Zhao, and J. W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Nature (3)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref] [PubMed]

New J. Phys. (2)

M. Bonarota, J. L. Le Gouët, and T. Chaneliere, “Highly multimode storage in a crystal,” New J. Phys. 13(1), 013013 (2011).
[Crossref]

C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, “Multiplexed on-demand storage of polarization qubits in a crystalz,” New J. Phys. 18(1), 013006 (2015).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. A (7)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[Crossref]

Y. L. Wu, L. Tian, Z. X. Xu, W. Ge, L. R. Chen, S. J. Li, H. X. Yuan, Y. F. Wen, H. Wang, C. D. Xie, and K. C. Peng, “Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble,” Phys. Rev. A 93(5), 052327 (2016).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).
[Crossref]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80(3), 032301 (2009).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

Phys. Rev. Lett. (18)

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref] [PubMed]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-capacity angularly multiplexed holographic memory operating at the single-photon level,” Phys. Rev. Lett. 118(6), 063603 (2017).
[Crossref] [PubMed]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G. J. Zhu, J. Schmiedmayer, and J. W. Pan, “Synchronized independent narrow-band single photons and efficient generation of photonic entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref] [PubMed]

L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang, “Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks,” Phys. Rev. Lett. 119(13), 130505 (2017).
[Crossref] [PubMed]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. Kennedy, and A. Kuzmich, “Entanglement of a photon and a collective atomic excitation,” Phys. Rev. Lett. 95(4), 040405 (2005).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96(3), 030405 (2006).
[Crossref] [PubMed]

H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J. Kimble, “Direct measurement of decoherence for entanglement between a photon and stored atomic excitation,” Phys. Rev. Lett. 97(11), 113603 (2006).
[Crossref] [PubMed]

S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, and J. W. Pan, “Highly retrievable spin-wave-photon entanglement source,” Phys. Rev. Lett. 114(21), 210501 (2015).
[Crossref] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99(18), 180505 (2007).
[Crossref] [PubMed]

P. Farrera, G. Heinze, and H. de Riedmatten, “Entanglement between a photonic time-bin qubit and a collective atomic spin excitation,” Phys. Rev. Lett. 120(10), 100501 (2018).
[Crossref] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Overview of the experiment. (a) Illustration of the experimental setup. A read pulse is spatially mode-matched with the write beam from the opposite direction. Both of the Stokes/anti-Stokes photons are collected in single mode fibers and detected by single photon detectors. The on/off switch for the cleaning, write and read pulse is controlled by Field Programmable Gate Array (FPGA). (b) Relevant atomic levels with considering Zeeman sublevels.
Fig. 2
Fig. 2 The time sequence of experimental cycle. A FPGA-based feedback protocol for controlling the cleaning beam, write beam and read beam is used to realize high-speed generation of atom-photon entanglement. The cleaning and write pulses repeat until Stokes photon is detected. The read pulse is only applied conditioned on these events.
Fig. 3
Fig. 3 Block diagram of the FPGA-based feedback-loop algorithm. The acquired signal of Stokes and anti-Stokes photons is written to first-in-first-out (FIFO) buffers in thread TA, and read from FIFO buffers in thread TB. The processed data of Stokes photon, anti-Stokes photon and coincidence are transferred to HOST computer by direct memory access (DMA) FIFO buffer.
Fig. 4
Fig. 4 The generation rates of Stokes photon and ratio R R a t i o S as a function of storage time with and without feedback protocol. The solid curves represent the theoretical results; the separation point is the measured results at the storage time of 1 μs, 26 μs and 51 μs.
Fig. 5
Fig. 5 The total coincidence count rate and the retrieval efficiency γ as a function of storage time τ. The solid curve is a fit of the form γ 0 exp ( τ 2 / τ 0 2 ) with γ0 = 15.5% and τ0 = 60 μs.
Fig. 6
Fig. 6 Polarization ratio and the total coincidence count rate for polarization setting of H-V (a), D-A (b) and the total coincidence count rate for polarization setting of R-L (c) as a function of excitation probability χ at the storage time of 1 μs. PR (black squares, left axis), Total coincidence count rate (red circles, right axis), Fitting result (red line, right axis).
Fig. 7
Fig. 7 Bell parameter S and fidelity of atom-photon entanglement as a function of storage time τ. Bell parameter S (black squares, left axis), Fidelity (red circle, right axis).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

| Φ S , A S = cos ϑ | H S | H A S + sin ϑ | V S | V A S .
P S = χ η S ,
P A S = χ η A S γ ,
P S , A S = P S P A S .
P S = χ η S ,
P A S = P S η A S γ ,
P S , A S = P A S
N S = 1 s [ χ ( δ t W + τ + δ t R + T 2 ) + ( 1 χ ) ( δ t W + T 1 + δ t C + T 2 ) ] .
R f e e d b a c k S = P S N S 1 s = χ η S χ ( δ t W + τ + δ t R + T 2 ) + ( 1 χ ) ( δ t W + T 1 + δ t C + T 2 ) .
R f e e d b a c k S , A S = R f e e d b a c k A S = R f e e d b a c k S η A S γ = χ η S η A S γ χ ( δ t W + τ + δ t R + T 2 ) + ( 1 χ ) ( δ t W + T 1 + δ t C + T 2 ) .
N S = N A S = 1 s δ t W + τ + δ t R + T 1 + δ t C + T 2 .
R n o n f e e d b a c k S = P S N S 1 s = χ η S δ t W + τ + δ t R + T 1 + δ t C + T 2
R n o n f e e d b a c k A S = P A S N A S 1 s = χ η A S γ δ t W + τ + δ t R + T 1 + δ t C + T 2 ,
R n o n f e e d b a c k S , A S = χ 2 η S η A S γ δ t W + τ + δ t R + T 1 + δ t C + T 2 .
R r a t i o S = R f e e d b a c k S R n o n f e e d b a c k S = χ ( δ t W + τ + δ t R + T 2 ) + ( 1 χ ) ( δ t W + T 1 + δ t C + T 2 ) δ t W + τ + δ t R + T 1 + δ t C + T 2 .
γ = P S , A S P S η A S .
P R H V ( D A ) = N / / H V ( D A ) / N H V ( D A ) ,
P R R L = N R L / N / / R L .
S = | E ( θ S , θ A S ) E ( θ S , θ A S ) + E ( θ S , θ A S ) + E ( θ S , θ A S ) | .
E ( θ S , θ A S ) = N θ S , θ A S + N θ S + π / 2 , θ A S + π / 2 N θ S + π / 2 , θ A S N θ S , θ A S + π / 2 N θ S , θ A S + N θ S + π / 2 , θ A S + π / 2 + N θ S + π / 2 , θ A S + N θ S , θ A S + π / 2 .
ρ = ( 0.6286 0.0786 + 0.0016 i 0.0659 + 0.0347 i 0.3835 + 0.0971 i 0.0786 0.0016 i 0.0112 0.0160 + 0.0039 i 0.0423 + 0.0032 i 0.0659 0.0347 i 0.0106 0.0039 i 0.0223 0.0380 0.0166 i 0.3835 0.0971 i 0.0423 0.0032 i 0.0380 + 0.0166 i 0.3378 ) .

Metrics