Abstract

We report on measurements of coherent backscattering from pharmaceutical tablets. Experimental data is analysed using the radiative transfer equation with focus on the determination of the reduced scattering coefficient μs. The results show a good agreement with μs determined by measuring the spatially resolved reflectance, whereat we demonstrate advantages of the coherent backscattering measurements. Furthermore, we present a correlation between μs and tablet compression force, respectively density.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coherent backscattering spectroscopy

Young L. Kim, Yang Liu, Vladimir M. Turzhitsky, Hemant K. Roy, Ramesh K. Wali, and Vadim Backman
Opt. Lett. 29(16) 1906-1908 (2004)

Coherent backscattering in biological media: measurement and estimation of optical properties

Gilwon Yoon, Dilip N. Ghosh Roy, and Richard C. Straight
Appl. Opt. 32(4) 580-585 (1993)

References

  • View by:
  • |
  • |
  • |

  1. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
    [Crossref]
  2. B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
    [Crossref] [PubMed]
  3. Z. Shi and C. A. Anderson, “Scattering orthogonalization of near-infrared spectra for analysis of pharmaceutical tablets,” Anal. Chem. 81(4), 1389–1396 (2009).
    [Crossref] [PubMed]
  4. T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
    [Crossref] [PubMed]
  5. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
    [Crossref] [PubMed]
  6. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the vis and close nir spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
    [Crossref] [PubMed]
  7. T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements: Application to pharmaceutical powders,” Appl. Spectrosc. 51(3), 309–317 (1997).
    [Crossref]
  8. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66(12), 5473–5476 (1995).
    [Crossref]
  9. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
    [Crossref]
  10. J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, İ. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express 19(13), 11922–11931 (2011).
    [Crossref] [PubMed]
  11. P. Krauter, C. Zoller, and A. Kienle, “Double anisotropic coherent backscattering of light,” Opt. Lett. 43(8), 1702–1705 (2018).
    [Crossref] [PubMed]
  12. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44(3), 366–377 (2005).
    [Crossref] [PubMed]
  13. G. Yoon, D. N. G. Roy, and R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32(4), 580–585 (1993).
    [Crossref] [PubMed]
  14. A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
    [Crossref] [PubMed]
  15. A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).
  16. N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
    [Crossref] [PubMed]
  17. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82(10), 103104 (2011).
    [Crossref] [PubMed]
  18. V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
    [Crossref]
  19. H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45(24), 6292–6300 (2006).
    [Crossref] [PubMed]
  20. A. Liemert and A. Kienle, “Spatially modulated light source obliquely incident on a semi-infinite scattering medium,” Opt. Lett. 37(19), 4158–4160 (2012).
    [Crossref] [PubMed]
  21. N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
    [Crossref] [PubMed]
  22. P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
    [Crossref]
  23. P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
    [Crossref] [PubMed]
  24. F. Foschum, Bestimmung der optischen Eigenschaften trüber Medien mittels nichtinvasiver Remissionsmessungen, PhD thesis, Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm (2011).
  25. Chemical Book, “Cellulose microcrystalline Properties,” http://www.chemicalbook.com/ChemicalProductProperty_EN_CB4217927.htm .
  26. Chemikal Book, “Sorbitol Properties,” http://www.chemicalbook.com/ChemicalProductProperty_EN_CB7183649.htm .
  27. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [Crossref]
  28. S. A. Yeboah, S. Wang, and P. R. Griffiths, “Effect of pressure on diffuse reflectance infrared spectra of compressed powders,” Appl. Spectrosc. 38(2), 259–264 (1984).
    [Crossref]
  29. VWR, “Sicherheitsdatenblatt,” https://de.vwr.com/assetsvc/asset/de_DE/id/7667884/contents .

2018 (1)

2017 (1)

P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
[Crossref]

2015 (3)

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

2014 (1)

N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

A. Liemert and A. Kienle, “Spatially modulated light source obliquely incident on a semi-infinite scattering medium,” Opt. Lett. 37(19), 4158–4160 (2012).
[Crossref] [PubMed]

2011 (2)

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, İ. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express 19(13), 11922–11931 (2011).
[Crossref] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82(10), 103104 (2011).
[Crossref] [PubMed]

2009 (1)

Z. Shi and C. A. Anderson, “Scattering orthogonalization of near-infrared spectra for analysis of pharmaceutical tablets,” Anal. Chem. 81(4), 1389–1396 (2009).
[Crossref] [PubMed]

2006 (2)

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45(24), 6292–6300 (2006).
[Crossref] [PubMed]

2005 (2)

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44(3), 366–377 (2005).
[Crossref] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

2004 (1)

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

1998 (1)

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

1997 (1)

1995 (1)

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66(12), 5473–5476 (1995).
[Crossref]

1993 (1)

1988 (1)

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
[Crossref]

1984 (1)

1941 (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Abrahamsson, C.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Akkermans, E.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
[Crossref]

Anderson, C. A.

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

Z. Shi and C. A. Anderson, “Scattering orthogonalization of near-infrared spectra for analysis of pharmaceutical tablets,” Anal. Chem. 81(4), 1389–1396 (2009).
[Crossref] [PubMed]

Andersson-Engels, S.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the vis and close nir spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
[Crossref] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Backman, V.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, İ. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express 19(13), 11922–11931 (2011).
[Crossref] [PubMed]

H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45(24), 6292–6300 (2006).
[Crossref] [PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44(3), 366–377 (2005).
[Crossref] [PubMed]

Barber, D.

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

Bergmann, F.

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

Blanco, M.

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

Bodenschatz, N.

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
[Crossref] [PubMed]

Brandes, A. R.

N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
[Crossref] [PubMed]

Burger, T.

Busignies, V.

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

Capoglu, I. R.

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

Çapoglu, I. R.

Caps, R.

Coello, J.

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

Coffin-Beach, D.

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

Couarraze, G.

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

De La Pezuela, C.

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

Drennen, J. K.

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

Evesque, P.

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

Feng, H.

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

Folestad, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Foschum, F.

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82(10), 103104 (2011).
[Crossref] [PubMed]

F. Foschum, Bestimmung der optischen Eigenschaften trüber Medien mittels nichtinvasiver Remissionsmessungen, PhD thesis, Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm (2011).

Fricke, J.

Geiger, S.

P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
[Crossref]

Greenstein, J. L.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Griffiths, P. R.

Henyey, L. G.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Igne, B.

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

Iturriaga, H.

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

Jäger, M.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82(10), 103104 (2011).
[Crossref] [PubMed]

Johansson, J.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the vis and close nir spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
[Crossref] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Johansson, S.

Khoptyar, D.

Kienle, A.

P. Krauter, C. Zoller, and A. Kienle, “Double anisotropic coherent backscattering of light,” Opt. Lett. 43(8), 1702–1705 (2018).
[Crossref] [PubMed]

P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
[Crossref]

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
[Crossref] [PubMed]

A. Liemert and A. Kienle, “Spatially modulated light source obliquely incident on a semi-infinite scattering medium,” Opt. Lett. 37(19), 4158–4160 (2012).
[Crossref] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82(10), 103104 (2011).
[Crossref] [PubMed]

Kim, Y. L.

Krauter, P.

P. Krauter, C. Zoller, and A. Kienle, “Double anisotropic coherent backscattering of light,” Opt. Lett. 43(8), 1702–1705 (2018).
[Crossref] [PubMed]

P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
[Crossref]

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

Kuhn, J.

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66(12), 5473–5476 (1995).
[Crossref]

Leclerc, B.

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

Li, X.

Liemert, A.

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
[Crossref] [PubMed]

A. Liemert and A. Kienle, “Spatially modulated light source obliquely incident on a semi-infinite scattering medium,” Opt. Lett. 37(19), 4158–4160 (2012).
[Crossref] [PubMed]

Liu, Y.

Maret, G.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
[Crossref]

Maspoch, S.

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

Maynard, R.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
[Crossref]

Mutyal, N. N.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, İ. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express 19(13), 11922–11931 (2011).
[Crossref] [PubMed]

Nothelfer, S.

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

Pan, T.

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

Porion, P.

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

Pradhan, P.

Radosevich, A. J.

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

Reitzle, D.

P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
[Crossref]

Rogers, J. D.

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, İ. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express 19(13), 11922–11931 (2011).
[Crossref] [PubMed]

Roy, D. N. G.

Roy, H. K.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44(3), 366–377 (2005).
[Crossref] [PubMed]

Saleem, M.

Sevick-Muraca, E. M.

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

Shi, Z.

Z. Shi and C. A. Anderson, “Scattering orthogonalization of near-infrared spectra for analysis of pharmaceutical tablets,” Anal. Chem. 81(4), 1389–1396 (2009).
[Crossref] [PubMed]

Simon, E.

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

Sparén, A.

Stocker, S.

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

Stoyneva, V.

Straight, R. C.

Subash, A. A.

Subramanian, H.

Sun, Z.

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

Svanberg, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Talwar, S.

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

Tchoreloff, P.

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

Turzhitsky, V.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, İ. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express 19(13), 11922–11931 (2011).
[Crossref] [PubMed]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66(12), 5473–5476 (1995).
[Crossref]

Wali, R. K.

Wang, S.

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66(12), 5473–5476 (1995).
[Crossref]

Wolf, P. E.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
[Crossref]

Yeboah, S. A.

Yi, J.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

Yoon, G.

Zoller, C.

Anal. Chem. (2)

Z. Shi and C. A. Anderson, “Scattering orthogonalization of near-infrared spectra for analysis of pharmaceutical tablets,” Anal. Chem. 81(4), 1389–1396 (2009).
[Crossref] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved nir spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Analyst. (1)

M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. De La Pezuela, “Near-infrared spectroscopy in the pharmaceutical industry,” Analyst. 123, 135R–150R (1998).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. (2)

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Eur. J. Pharm. and Biopharm. (1)

V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, “Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography,” Eur. J. Pharm. and Biopharm. 64(1), 38–50 (2006).
[Crossref]

J. Biomed. Opt. (5)

N. Bodenschatz, A. R. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014).
[Crossref] [PubMed]

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” J. Biomed. Opt. 17(11), 115001 (2012).
[Crossref] [PubMed]

N. Bodenschatz, P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert, and A. Kienle, “Detecting structural information of scatterers using spatial frequency domain imaging,” J. Biomed. Opt. 20(11), 116006 (2015).
[Crossref] [PubMed]

P. Krauter, D. Reitzle, S. Geiger, and A. Kienle, “Determination of three optical properties from subdiffusive spatially resolved reflectance calculations,” J. Biomed. Opt. 22(7), 075003 (2017).
[Crossref]

P. Krauter, S. Nothelfer, N. Bodenschatz, E. Simon, S. Stocker, F. Foschum, and A. Kienle, “Optical phantoms with adjustable subdiffusive scattering parameters,” J. Biomed. Opt. 20(10), 105008 (2015).
[Crossref] [PubMed]

J. Pharm. Sci. (2)

B. Igne, S. Talwar, H. Feng, J. K. Drennen, and C. A. Anderson, “Near-infrared spatially resolved spectroscopy for tablet quality determination,” J. Pharm. Sci. 104(12), 4074–4081 (2015).
[Crossref] [PubMed]

T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, “Measurement of low-dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,” J. Pharm. Sci. 93(3), 635–645 (2004).
[Crossref] [PubMed]

J. Phys. France (1)

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49(1), 77–98 (1988).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. (1)

A. J. Radosevich, J. D. Rogers, I. R. Capoglu, N. N. Mutyal, P. Pradhan, and V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” Phys. Lett. +  18(4), 1313–1325 (2012).

Rev. Sci. Instrum. (2)

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66(12), 5473–5476 (1995).
[Crossref]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82(10), 103104 (2011).
[Crossref] [PubMed]

Other (4)

VWR, “Sicherheitsdatenblatt,” https://de.vwr.com/assetsvc/asset/de_DE/id/7667884/contents .

F. Foschum, Bestimmung der optischen Eigenschaften trüber Medien mittels nichtinvasiver Remissionsmessungen, PhD thesis, Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm (2011).

Chemical Book, “Cellulose microcrystalline Properties,” http://www.chemicalbook.com/ChemicalProductProperty_EN_CB4217927.htm .

Chemikal Book, “Sorbitol Properties,” http://www.chemicalbook.com/ChemicalProductProperty_EN_CB7183649.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the used coherent backscattering setup. SC-L: super-continuum light source, AOTF: acousto-optical tunable filter, beam splitter: 50/50 plate with AR coating on the left side according to the schematic, f1 = 20 mm, f2 = 75 mm, f3 = 150 mm, f4 = 500 mm (achromatic lenses), beam dump: self-made device consisting of two opposite, black painted mirrors, mounted under angles of 45° respectively −45° relative to the incoming beam direction.
Fig. 2
Fig. 2 CBS measurement data and fit results for three epoxy resin based optical phantoms (p1, p2, p3) at λ = 562 nm. The data has been processed as described in section 3 and fitted to Eq. (2), which results in the parameters given in the legend. The enhancement factor of η = 1.3 can approximately be interpreted as the ratio of the reflectance at f = 0 mm−1 to the reflectance the curves converge to for large frequencies.
Fig. 3
Fig. 3 Reduced scattering coefficients of three epoxy resin based optical phantoms (p1, p2, p3), determined by CBS and SRR measurements. The symbols show the respective measurement data, the lines the results of power law fits.
Fig. 4
Fig. 4 Reduced scattering coeffitient μ s of pharmaceutical tablets compressed by different forces: 5 kN, 10 kN and 15 kN, exercised on a circular area of 1 cm diameter. The symbols represent averages and standard deviations of six samples per kind, determined by SRR and CBS measurements. The lines show the results of power law fits.
Fig. 5
Fig. 5 Correlation between mass density and reduced scattering coeffitient μ s at λ = 542 nm. Linear regression has been performed based on the results for single samples (unfilled symbols). The filled symbols show averages over samples of the same kind.
Fig. 6
Fig. 6 Reduced scattering coefficients of various ASS tablets, determined via CBS measurement. Mass specifications refer to the amount of active ingredient per tablet, considering that total tablet masses differ from type to type. The symbols represent averaged values of six samples, the lines the results of power law fits.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α 2 R ( ρ ) d 2 ρ incoherent multiple scattering + 2 R ( ρ ) e i Δ k ρ d 2 ρ coherent multiple scattering .
α S F ( f = 0 ) + η S F ( 2 π f ) ,

Metrics