Abstract

A 1 × 8 multimode interferometer (MMI) based multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier (SOA) through a 2-port multimode interference reflector (MIR) is reported in this paper. The 2-port MIR can be fabricated with deeply etched waveguides of the MCI laser with no extra fabrication process, which decreases the fabrication complexity greatly. To reduce the loss arising from mode mismatch between surface and deep ridge waveguides, a tapered shallow-deep transition structure is designed and fabricated with a loss of 0.09 dB ± 0.03 dB. The MCI laser with integrated SOA achieves a tuning range of 52.5 nm with side mode suppression ratios higher than 40 dB across the tuning range and more than 13 dBm output power coupled into a lensed fiber at room temperature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theory and simulation of multi-channel interference (MCI) widely tunable lasers

Quanan Chen, Qiaoyin Lu, and Weihua Guo
Opt. Express 23(14) 18040-18051 (2015)

Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform

Javier S. Fandiño, José David Doménech, and Pascual Muñoz
Opt. Express 23(16) 20219-20233 (2015)

Widely tunable multimode-interference based coupled cavity laser with integrated interferometer

Domenico D’Agostino, Daan Lenstra, Huub Ambrosius, and Meint Smit
Opt. Express 26(11) 14159-14173 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Buus, M. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources, Second Edition (Wiley-Interscience 2005).
  2. T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
    [Crossref]
  3. N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
    [Crossref]
  4. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [Crossref]
  5. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
    [Crossref]
  6. M. Chacinski, M. Isaksson, and R. Schatz, “Widely tunable wavelength conversion 10 Gb/s using a modulated grating Y-branch laser integrated with an optical amplifier,” in Proceedings of Conference on Optical Fiber Communication (IEEE, 2007), JThA34.
    [Crossref]
  7. Q. Chen, Q. Lu, and W. Guo, “Theory and simulation of multi-channel interference (MCI) widely tunable lasers,” Opt. Express 23(14), 18040–18051 (2015).
    [Crossref] [PubMed]
  8. Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
    [Crossref]
  9. E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
    [Crossref]
  10. Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
    [Crossref]
  11. D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(4), 653–656 (2015).
    [Crossref] [PubMed]
  12. P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
    [Crossref]
  13. N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
    [Crossref]
  14. D. D’Agostino, D. Lenstra, H. Ambrosius, and M. Smit, “Widely tunable multimode-interference based coupled cavity laser with integrated interferometer,” Opt. Express 26(11), 14159–14173 (2018).
    [Crossref] [PubMed]
  15. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
    [Crossref]
  16. Q. Chen, G. Liu, Q. Lu, and W. Guo, “Optimization algorithm based characterization scheme for tunable semiconductor lasers,” Opt. Express 24(18), 20982–20992 (2016).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

2016 (3)

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, G. Liu, Q. Lu, and W. Guo, “Optimization algorithm based characterization scheme for tunable semiconductor lasers,” Opt. Express 24(18), 20982–20992 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (1)

2011 (1)

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

2007 (1)

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

2005 (1)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Abraham, P.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Alexander, J. K.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

Ambrosius, H.

Ambrosius, H. P. M. M.

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Caro, L.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Chen, Q.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, G. Liu, Q. Lu, and W. Guo, “Optimization algorithm based characterization scheme for tunable semiconductor lasers,” Opt. Express 24(18), 20982–20992 (2016).
[Crossref] [PubMed]

Q. Chen, Q. Lu, and W. Guo, “Theory and simulation of multi-channel interference (MCI) widely tunable lasers,” Opt. Express 23(14), 18040–18051 (2015).
[Crossref] [PubMed]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Coldren, L. A.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

D’Agostino, D.

Dernaika, M.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Fish, G. A.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Focht, M.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Fujiwara, N.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

Guo, W.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, G. Liu, Q. Lu, and W. Guo, “Optimization algorithm based characterization scheme for tunable semiconductor lasers,” Opt. Express 24(18), 20982–20992 (2016).
[Crossref] [PubMed]

Q. Chen, Q. Lu, and W. Guo, “Theory and simulation of multi-channel interference (MCI) widely tunable lasers,” Opt. Express 23(14), 18040–18051 (2015).
[Crossref] [PubMed]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Guzzon, R. S.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

Hall, E.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Ishii, H.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

Johansson, L.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

Kakitsuka, T.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Kawaguchi, Y.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

Kelly, N.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Kelly, N. P.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

Kleijn, E.

Kondo, Y.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Krishnamachari, U.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

Larson, M. C.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Leijtens, X. J. M.

Lenstra, D.

Liijeberg, T.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Liu, G.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, G. Liu, Q. Lu, and W. Guo, “Optimization algorithm based characterization scheme for tunable semiconductor lasers,” Opt. Express 24(18), 20982–20992 (2016).
[Crossref] [PubMed]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Liu, Y.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Lu, Q.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, G. Liu, Q. Lu, and W. Guo, “Optimization algorithm based characterization scheme for tunable semiconductor lasers,” Opt. Express 24(18), 20982–20992 (2016).
[Crossref] [PubMed]

Q. Chen, Q. Lu, and W. Guo, “Theory and simulation of multi-channel interference (MCI) widely tunable lasers,” Opt. Express 23(14), 18040–18051 (2015).
[Crossref] [PubMed]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Ma, X.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Matsuo, S.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Morrissey, P. E.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Nicholes, S. C.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

Norberg, E. J.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

Okamoto, H.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

Oohashi, H.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

Perrott, A. H.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

Peters, F. H.

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Ristic, S.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Sato, T.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Segawa, T.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Shibata, Y.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Smit, M.

Smit, M. K.

Sun, W.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

Takahashi, R.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

Tohmon, R.

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Yang, H.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Zhao, G.

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

IEEE J. Lightwave Technol. (1)

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” IEEE J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
[Crossref]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of multi-channel interference (MCI) widely tunable semiconductor laser,” IEEE Photonics Technol. Lett. 28(24), 2862–2865 (2016).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled cavity single-mode laser based on regrowth-free integrated MMI reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

N. P. Kelly, M. Dernaika, L. Caro, P. E. Morrissey, A. H. Perrott, J. K. Alexander, and F. H. Peters, “Regrowth-free single mode laser based on dual port multimode interference reflector,” IEEE Photonics Technol. Lett. 29(3), 279–282 (2017).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (5)

Q. Chen, X. Ma, W. Sun, Y. Liu, G. Liu, G. Zhao, Q. Lu, and W. Guo, “Multi-channel interference (MCI) widely tunable laser integrated with semiconductor optical amplifier,” in Proceedings of Conference on Optical Fiber Communication and Exhibition (IEEE, 2017), W4G.2.
[Crossref]

J. Buus, M. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources, Second Edition (Wiley-Interscience 2005).

T. Liijeberg, R. Tohmon, E. Hall, P. Abraham, M. Focht, G. A. Fish, M. C. Larson, and L. A. Coldren, “High-power, widely-tunable sampled grating DBR laser integrated with a semiconductor optical amplifier,” in Proceedings of Semiconductor Laser Conference (IEEE, 2002), 45–46.
[Crossref]

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kondo, and R. Takahashi, “Monolithically integrated filter-free wavelength converter with widely tunable double-ring resonator coupled laser,” in Proceedings of International conference on Indium Phosphide and Related Materials (IEEE, 2008), 1–4.
[Crossref]

M. Chacinski, M. Isaksson, and R. Schatz, “Widely tunable wavelength conversion 10 Gb/s using a modulated grating Y-branch laser integrated with an optical amplifier,” in Proceedings of Conference on Optical Fiber Communication (IEEE, 2007), JThA34.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Microscope image of the fabricated 1 × 8 MMI based MCI laser integrated with SOA.
Fig. 2
Fig. 2 Simulated reflection spectra from the right side of the gain section with reflection peak tuned at three different wavelengths.
Fig. 3
Fig. 3 (a) Schematic drawing of the tapered shallow-deep transition structure; SEM images of the fabricated shallow-deep transition (b) and 1 × 8 MMI (c).
Fig. 4
Fig. 4 Coupling efficiency of the shallow-deep transition versus the length of the taper.
Fig. 5
Fig. 5 Experimental characterization setups for the MCI laser with integrated SOA.
Fig. 6
Fig. 6 (a) Typical lasing spectrum of the MCI laser with integrated SOA; (b) Superimposed lasing spectra at a wavelength spacing of 2.5 nm from 1532.5 nm to 1585nm; (c) Corresponding SMSRs and peak powers.
Fig. 7
Fig. 7 (a) LI curves at different lasing wavelengths across the tuning range; (b) Output power coupled into a lensed fiber versus SOA current.
Fig. 8
Fig. 8 Temperature stability of the MCI laser: wavelength versus temperature and SMSR versus temperature.
Fig. 9
Fig. 9 Microscope images of the 2-port MIR based FP cavity laser (a) and the cleaved-facet FP cavity laser (b); lasing spectra (c); LI curves (d).
Fig. 10
Fig. 10 (a) Microscope image of the waveguides used to measure the loss of the designed shallow-deep transition; (b) Measured insertion loss of the shallow-deep transition pairs.
Fig. 11
Fig. 11 (a) Measured 1 × 8 MMI insertion loss at 1550 nm; (b) Transmission spectra of the 1 × 8 MMI for TE mode.

Metrics