Abstract

This paper first brings a single receiver multiple-input-multiple-output (SR-MIMO) model to realize the space multiplexing in the visible light communication (VLC) system. The signals from two transmitters are super-imposed in the receiver thus to realize a specially superposed modulation. Depending on the power ratio between two transmitters, various superposed signal structures can be obtained. In order to separate the superposed signal, we design a novel detection algorithm which consists of the successive interference cancellation (SIC) and the look-up table (LUT). Extensive experiments demonstrate that a data rate of 1.5Gbit/s is achieved in the 1.3-m indoor line-of-sight (LOS) scenario with the bit error rates (BERs) are below the forward error correction (FEC) threshold.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced performance of a multiband super-Nyquist CAP16 VLC system employing a joint MIMO equalizer

Shangyu Liang, Liang Qiao, Xingyu Lu, and Nan Chi
Opt. Express 26(12) 15718-15725 (2018)

A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators

Hai-Han Lu, Ying-Pyng Lin, Po-Yi Wu, Chia-Yi Chen, Min-Chou Chen, and Tai-Wei Jhang
Opt. Express 22(3) 3468-3474 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
    [Crossref]
  2. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  3. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
    [Crossref]
  4. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  5. K. Routray, “The Changing Trends of Optical Communication,” Potentials IEEE 33(1), 28–33 (2014).
    [Crossref]
  6. K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
    [Crossref]
  7. J. Grubor, J. W. Walewski, K. D. Langer, and S. Randel, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008).
    [Crossref]
  8. J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
    [Crossref]
  9. L. Qiao, N. Chi, S. Liang, and X. Lu, “MISO visible light communication system utilizing MCMMA aided pre-convergence of STBC decoding,” in Optical Fiber Communication, (OFC, 2018), Th2A.64.
  10. L. Qiao and N. Chi, “Enhanced method with superposed signal-based visible light communication system using multiple-input signal-output beamforming,” Opt. Eng. 56(8), 1–7 (2017).
    [Crossref]
  11. J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
    [Crossref]
  12. J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2×2 MIMO VLC network based on EGC-STBC,” in Proceeding of European Conference on Optical Communication, (ECOC, 2015), pp. 1–3.
    [Crossref]
  13. L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
    [Crossref]
  14. H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
    [Crossref]
  15. J. Y. Wang, J. Dai, R. Guan, L. Jia, Y. Wang, and M. Chen, “Channel capacity and receiver deployment optimization for multi-input multi-output visible light communications,” Opt. Express 24(12), 13060–13074 (2016).
    [Crossref] [PubMed]
  16. H. Park, C. Ko, and S. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels,” IEEE Trans. Commun. 61(4), 1535–1543 (2013).
    [Crossref]
  17. T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
    [Crossref]
  18. A. H. Azhar, T. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in Proc. IEEE Globecom Workshop OWC, (2010), pp. 1052–1056.
    [Crossref]
  19. A. H. Azhar, T. Tran, and D. C. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
    [Crossref]
  20. A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
    [Crossref]
  21. J. Zhao, LK. Chen, and Y. Hong, “Experimental Demonstration of Performance-enhanced MIMO-OFDM Visible Light Communications,” in Optical Fiber Communication, (OFC, 2017), Th1E.2.
  22. Y. Hong, J. Xu, and L. K. Chen, “Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications,” Opt. Express 25(11), 12908–12914 (2017).
    [Crossref] [PubMed]
  23. S. Nishimoto, T. Nagura, T. Yamazato, and Yendo, “Overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proc. IEEE ITSC (2011), pp. 1704–1709.
  24. Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
    [Crossref]
  25. C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
    [Crossref]
  26. Y. Wang and N. Chi, “Indoor gigabit 2×2 imaging multiple-input–multiple-output visible light communication,” Chin. Opt. Lett. 12(10), 12–15 (2014).
  27. P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Ursi International Symposium on Signals, Systems, and Electronics, (IEEE, 2002). 295–300.
  28. K. Kim, K. Lee, and K. Lee, “An inter-lighting interference cancellation scheme for MISO-VLC systems,” Int. J. Electron. 104(8), 1377–1387 (2017).
    [Crossref]

2017 (3)

L. Qiao and N. Chi, “Enhanced method with superposed signal-based visible light communication system using multiple-input signal-output beamforming,” Opt. Eng. 56(8), 1–7 (2017).
[Crossref]

Y. Hong, J. Xu, and L. K. Chen, “Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications,” Opt. Express 25(11), 12908–12914 (2017).
[Crossref] [PubMed]

K. Kim, K. Lee, and K. Lee, “An inter-lighting interference cancellation scheme for MISO-VLC systems,” Int. J. Electron. 104(8), 1377–1387 (2017).
[Crossref]

2016 (1)

2015 (6)

Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
[Crossref]

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
[Crossref]

2014 (4)

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

K. Routray, “The Changing Trends of Optical Communication,” Potentials IEEE 33(1), 28–33 (2014).
[Crossref]

Y. Wang and N. Chi, “Indoor gigabit 2×2 imaging multiple-input–multiple-output visible light communication,” Chin. Opt. Lett. 12(10), 12–15 (2014).

2013 (4)

H. Park, C. Ko, and S. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels,” IEEE Trans. Commun. 61(4), 1535–1543 (2013).
[Crossref]

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

A. H. Azhar, T. Tran, and D. C. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

2011 (1)

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

2009 (1)

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

2008 (2)

J. Grubor, J. W. Walewski, K. D. Langer, and S. Randel, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008).
[Crossref]

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Alouini, S.

H. Park, C. Ko, and S. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels,” IEEE Trans. Commun. 61(4), 1535–1543 (2013).
[Crossref]

Azhar, A. H.

A. H. Azhar, T. Tran, and D. C. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

A. H. Azhar, T. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in Proc. IEEE Globecom Workshop OWC, (2010), pp. 1052–1056.
[Crossref]

Barry, J. R.

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

Bentley, E.

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

Botella, C.

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

Burchardt, H.

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

Burton, A.

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

Chen, L. K.

Chen, M.

Chi, N.

L. Qiao and N. Chi, “Enhanced method with superposed signal-based visible light communication system using multiple-input signal-output beamforming,” Opt. Eng. 56(8), 1–7 (2017).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

Y. Wang and N. Chi, “Indoor gigabit 2×2 imaging multiple-input–multiple-output visible light communication,” Chin. Opt. Lett. 12(10), 12–15 (2014).

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Dai, J.

Fath, T.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

Faulkner, G.

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Faulkner, GE.

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Foschini, G. J.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Ursi International Symposium on Signals, Systems, and Electronics, (IEEE, 2002). 295–300.

Ghassemlooy, Z.

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

Golden, G. D.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Ursi International Symposium on Signals, Systems, and Electronics, (IEEE, 2002). 295–300.

Grubor, J.

Guan, R.

Haas, H.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

Hong, Y.

Huang, X.

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

Jia, L.

Jung, D.

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Kavehrad, M.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Kim, K.

K. Kim, K. Lee, and K. Lee, “An inter-lighting interference cancellation scheme for MISO-VLC systems,” Int. J. Electron. 104(8), 1377–1387 (2017).
[Crossref]

Ko, C.

H. Park, C. Ko, and S. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels,” IEEE Trans. Commun. 61(4), 1535–1543 (2013).
[Crossref]

Langer, K. D.

Lee, K.

K. Kim, K. Lee, and K. Lee, “An inter-lighting interference cancellation scheme for MISO-VLC systems,” Int. J. Electron. 104(8), 1377–1387 (2017).
[Crossref]

K. Kim, K. Lee, and K. Lee, “An inter-lighting interference cancellation scheme for MISO-VLC systems,” Int. J. Electron. 104(8), 1377–1387 (2017).
[Crossref]

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Liang, F.

J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
[Crossref]

Little, T. D. C.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Minh, H. L.

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

Minh, HL.

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Minh, L.

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

O’Brien, D.

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

A. H. Azhar, T. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in Proc. IEEE Globecom Workshop OWC, (2010), pp. 1052–1056.
[Crossref]

O’Brien, D. C.

A. H. Azhar, T. Tran, and D. C. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Oh, Y.

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Park, H.

H. Park, C. Ko, and S. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels,” IEEE Trans. Commun. 61(4), 1535–1543 (2013).
[Crossref]

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

Qiao, L.

L. Qiao and N. Chi, “Enhanced method with superposed signal-based visible light communication system using multiple-input signal-output beamforming,” Opt. Eng. 56(8), 1–7 (2017).
[Crossref]

Randel, S.

Routray, K.

K. Routray, “The Changing Trends of Optical Communication,” Potentials IEEE 33(1), 28–33 (2014).
[Crossref]

Serafimovski, N.

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

Shang, H.

Shi, J.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

Tao, L.

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Tran, T.

A. H. Azhar, T. Tran, and D. C. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

A. H. Azhar, T. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in Proc. IEEE Globecom Workshop OWC, (2010), pp. 1052–1056.
[Crossref]

Tsonev, D.

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

Valenzuela, R. A.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Ursi International Symposium on Signals, Systems, and Electronics, (IEEE, 2002). 295–300.

Videv, S.

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

Walewski, J. W.

Wang, J. Y.

Wang, Y.

J. Y. Wang, J. Dai, R. Guan, L. Jia, Y. Wang, and M. Chen, “Channel capacity and receiver deployment optimization for multi-input multi-output visible light communications,” Opt. Express 24(12), 13060–13074 (2016).
[Crossref] [PubMed]

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

Y. Wang and N. Chi, “Indoor gigabit 2×2 imaging multiple-input–multiple-output visible light communication,” Chin. Opt. Lett. 12(10), 12–15 (2014).

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Wolniansky, P. W.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Ursi International Symposium on Signals, Systems, and Electronics, (IEEE, 2002). 295–300.

Won, ET.

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Xu, J.

Yang, C.

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

Yu, J.

Zeng, L.

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Zhang, K.

J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
[Crossref]

Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
[Crossref]

Zhang, Y.

Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
[Crossref]

J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
[Crossref]

Zhu, J.

J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
[Crossref]

Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
[Crossref]

Zhu, Y.

Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
[Crossref]

Chin. Opt. Lett. (1)

Y. Wang and N. Chi, “Indoor gigabit 2×2 imaging multiple-input–multiple-output visible light communication,” Chin. Opt. Lett. 12(10), 12–15 (2014).

IEEE Commun. Lett. (2)

Y. Zhu, J. Zhu, K. Zhang, and Y. Zhang, “A Double-Layer VLC System with Low-Complexity ML Detection and Binary Constellation Designs,” IEEE Commun. Lett. 19(4), 561–564 (2015).
[Crossref]

K. Lee, H. Park, and J. R. Barry, “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

IEEE Commun. Mag. (1)

H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

L. Zeng, D. C. O’Brien, HL. Minh, GE. Faulkner, K. Lee, D. Jung, Y. Oh, and ET. Won, “High data rate multiple input multple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

IEEE Photonics J. (1)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (4)

L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-Speed Visible Light Communications Using Multiple-Resonant Equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

J. Zhu, F. Liang, K. Zhang, and Y. Zhang, “Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications,” IEEE Photonics Technol. Lett. 27(15), 1667–1670 (2015).
[Crossref]

A. H. Azhar, T. Tran, and D. C. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

A. Burton, H. L. Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO,” IEEE Photonics Technol. Lett. 26(9), 945–948 (2014).
[Crossref]

IEEE Trans. Commun. (2)

H. Park, C. Ko, and S. Alouini, “On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels,” IEEE Trans. Commun. 61(4), 1535–1543 (2013).
[Crossref]

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

IEEE Wirel. Commun. (1)

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Int. J. Electron. (1)

K. Kim, K. Lee, and K. Lee, “An inter-lighting interference cancellation scheme for MISO-VLC systems,” Int. J. Electron. 104(8), 1377–1387 (2017).
[Crossref]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

J. Shi, Y. Wang, X. Huang, L. Tao, and N. Chi, “Enhanced performance using STBC aided coding for led‐based multiple input single output visible light communication network,” Microw. Opt. Technol. Lett. 57(12), 2943–2946 (2015).
[Crossref]

Opt. Commun. (1)

C. Yang, Y. Wang, Y. Wang, X. Huang, and N. Chi, “Demonstration of high-speed multi-user multi-carrier CDMA visible light communication,” Opt. Commun. 336, 269–272 (2015).
[Crossref]

Opt. Eng. (1)

L. Qiao and N. Chi, “Enhanced method with superposed signal-based visible light communication system using multiple-input signal-output beamforming,” Opt. Eng. 56(8), 1–7 (2017).
[Crossref]

Opt. Express (3)

Potentials IEEE (1)

K. Routray, “The Changing Trends of Optical Communication,” Potentials IEEE 33(1), 28–33 (2014).
[Crossref]

Other (6)

L. Qiao, N. Chi, S. Liang, and X. Lu, “MISO visible light communication system utilizing MCMMA aided pre-convergence of STBC decoding,” in Optical Fiber Communication, (OFC, 2018), Th2A.64.

A. H. Azhar, T. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in Proc. IEEE Globecom Workshop OWC, (2010), pp. 1052–1056.
[Crossref]

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2×2 MIMO VLC network based on EGC-STBC,” in Proceeding of European Conference on Optical Communication, (ECOC, 2015), pp. 1–3.
[Crossref]

S. Nishimoto, T. Nagura, T. Yamazato, and Yendo, “Overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proc. IEEE ITSC (2011), pp. 1704–1709.

J. Zhao, LK. Chen, and Y. Hong, “Experimental Demonstration of Performance-enhanced MIMO-OFDM Visible Light Communications,” in Optical Fiber Communication, (OFC, 2017), Th1E.2.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Ursi International Symposium on Signals, Systems, and Electronics, (IEEE, 2002). 295–300.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Diagrammatic drawing of the superposed constellation in SR-MIMO.
Fig. 2
Fig. 2 Algorithm flow of the SIC-LUT.
Fig. 3
Fig. 3 BER performance of different detection algorithms with SNR.
Fig. 4
Fig. 4 Block diagram and experimental setup in the VLC-SR-MIMO system.
Fig. 5
Fig. 5 BER versus Diff-DC voltage and Diff-VPP voltage.
Fig. 6
Fig. 6 Superposed constellations in the receiver.
Fig. 7
Fig. 7 BER performance with the ε .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = k = 1 2 h k ( t ) x k ( t ) + n k ( t )
A X = ± 1, ± 3 , , ± ( N 1 )
A X 1 = ± 1
A X 2 = ± 1, ± 3
A Y = ( ε A X 1 - 3 , ε A X 1 - 1 , ε A X 1 + 1 , ε A X 1 + 3 )
H = Y X = Y X 1 + X 2
X ˜ = W z f Y
X ˜ = W z f Y       = W z f ( k = 1 2 ( H k X k + N k ) )       = k = 1 2 X k + N ˜ z f
v y c = ( ε A X 1 - 3 + ε A X 1 - 1 + ε A X 1 + 1 + ε A X 1 + 3 ) 4 = ε A X 1
X ˜ 1 = W z f 1 Y c
X ˜ 1 = W z f 1 Y c       = W z f 1 ( H 1 X 1 + N 1 )       = X 1 + N ˜ z f
Y 2 = Y H 1 X ˜ 1 + N ˜ z f

Metrics